Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wirbelsturm am Plasmarand

10.12.2002


Umgebautes Kernfusionsexperiment TEXTOR wieder in Betrieb



Energie nach dem Vorbild der Sonne zu erzeugen, ist das Ziel der Kernfusionsforschung. Bei der Fusion verschmelzen schwere Wasserstoffkerne unter Freisetzung von sehr großen Energiemengen. Auf der Erde sind dafür Temperaturen von etwa 100 Millionen Grad nötig. Mit der Einweihung des Dynamischen Ergodischen Divertors (DED) steht den Fusionsforschern am Forschungszentrum Jülich ab 6. Dezember ein weltweit einzigartiges Experiment zur Verfügung, um den Kernfusionsprozess zu steuern. Eingebaut in TEXTOR, soll es grundlegende Fragen der Wechselwirkung vieler Millionen Grad heißer Fusionsplasmen mit den umgebenden Wänden beantworten. Eingebunden ist das DED-Experiment in die weltweiten Aktivitäten zum Bau des nächsten großen Fusionsreaktors ITER.

... mehr zu:
»Divertor »Kernfusion »Plasmarand »TEXTOR


Das Treibhausgas Kohlendioxid zu reduzieren, ist zentrales Thema dieses Jahrhunderts. Wohlstand und Bevölkerung nehmen weltweit zu. Der Energiebedarf steigt. Um langfristig die Energieversorgung zu sichern, müssen zusätzliche Energieformen erschlossen werden. Eine solche Energiequelle zur nachhaltigen und Kohlendioxid freien Stromversorgung stellt die kontrollierte Kernfusion dar: Ähnlich wie in der Sonne wird bei Temperaturen von etwa 100 Millionen Grad Energie aus der Verschmelzung von schwerem Wasserstoff gewonnen. Die Brennstoffe der Kernfusion stehen praktisch unbegrenzt zur Verfügung.

Die Fusionsforschung befindet sich derzeit auf dem Weg in eine neue Ära. Zum ersten Mal soll ein "brennendes" Plasma erzeugt werden, aus dem Energie mehr gewonnen wird, als zum Heizen nötig ist. Die Herausforderung besteht darin, den Wirkungsgrad zu steigern und den Vorgang dauerhaft zu beherrschen. Das von Europa, Japan und Russland gemeinsam vorbereitete Experiment ITER soll dabei der letzte Schritt vor dem Bau des ersten, kontinuierlich arbeitenden Fusionskraftwerks namens DEMO sein. DEMO wird etwa ein Gigawatt elektrische Leistung ins Netz speisen. Dies entspricht der Leistung eines heutigen Großkraftwerks. "Bereits in 20 Jahren könnte mit dem Bau eines ersten Strom liefernden Kraftwerks begonnen werden", schätzen Prof. Ulrich Samm und Dr. Robert Wolf, die beiden Leiter des Instituts für Plasmaphysik in Jülich.

Mit dem Dynamischen Ergodischen Divertor wird am Forschungszentrum Jülich ein wichtiger Schritt in diese Richtung getan: Erfolgreich erprobt wurde der Ergodische Divertor in Frankreich. Durch die Einführung einer "dynamischen" Komponente haben die Jülicher Forscher die Idee entscheidend verbessert und erstmals experimentell realisiert. Im Detail sieht dies wie folgt aus: Die Verschmelzung von schwerem Wasserstoff findet in einem viele Millionen Grad heißen Plasma statt. In diesem Plasma gibt es keine vollständigen Atome mehr, Atomkerne und Elektronen bewegen sich statt dessen getrennt voneinander. Prallen Kerne aufeinander, verschmelzen sie unter bestimmten Bedingungen zu Heliumkernen und es wird mehr Energie gewonnen, als zum Heizen benötigt wird. Dazu muss das Plasma so gut wie möglich in einen ringförmigen Magnetkäfig eingeschlossen werden. Die Magnetfeldlinien werden hierzu wie ein Mantel um das Ringplasma gewickelt.

Am Plasmarand hat der gute magnetische Einschluss jedoch Nachteile. Dort, wo die Magnetfeldlinien auf die Reaktorwand treffen, kommt es lokal zu einer viel zu hohen Aufheizung und im schlimmsten Fall zur Schädigung des Wandmaterials. Genau an dieser Stelle setzt der DED an: Er besteht aus 18 einzelnen Spulen, die auf der Innenseite des Reaktors angebracht sind. Fließt durch die Spulen Wechselstrom, baut sich ein rotierendes (dynamisches) magnetisches Störfeld auf. Zusätzlich werden die geschlossenen magnetischen Feldlinien durch Verwirbelung am Plasmarand aufgebrochen (Ergodisierung). Diese Veränderung des Magnetfelds führt dazu, dass der Wärmefluss aus dem heißen Kernplasma auf große Wandbereiche verteilt wird. Lokale Überhitzungen werden vermieden. Ein zusätzlicher Effekt der Magnetfeldverwirbelung: Verunreinigungen gelangen nicht ins Innere der heißen Zone, wodurch sich die Qualität und Lebensdauer des Plasmas erhöhen.

Das Institut für Plasmaphysik (IPP) am Forschungszentrum Jülich koordiniert europaweit die Aktivitäten zum Studium der Wechselwirkung von heißen Wasserstoffplasmen mit der Reaktorwand. Im Rahmen eines EURATOM-Assoziationsvertrags führt das Institut ein Forschungs- und Entwicklungsprogramm zu ausgewählten Problemen der Hochtemperatur-Plasmaphysik und der Kernfusion durch. Hierzu betreibt das IPP gemeinsam mit seinen belgischen und niederländischen Partnern im "Trilateralen Euregio Cluster" (TEC) das Fusionsexperiment TEXTOR als zentrales Großforschungsgerät.

Peter Schäfer | idw
Weitere Informationen:
http://www.fz-juelich.de/aktuelles/pressemitteilungen.html
http://www.fz-juelich.de/ipp
http://www.itereu.de

Weitere Berichte zu: Divertor Kernfusion Plasmarand TEXTOR

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

nachricht Was Einstein noch nicht wusste
20.09.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

Gesundheitstipps und ein virtueller Tauchgang zu Korallenriffen

20.09.2018 | Veranstaltungen

Internationale Experten der Orthopädietechnik tagen in Göttingen

19.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bei Depressionen ist Hirnregion zur Stresskontrolle vergrößert

20.09.2018 | Biowissenschaften Chemie

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungsnachrichten

Was Einstein noch nicht wusste

20.09.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics