Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jenaer Physiker schmelzen ohne Hitze

28.02.2001


Den Jenaern Physikern Prof. Dr. Eckhart Förster und Dr. Ingo Uschmann ist es gelungen, die Oberfläche eines Kristalls allein durch die elektromagnetische Energie eines extrem schnell gepulsten Lasers zu schmelzen, noch bevor Hitze einwirken konnte.

Eine weniger als einen tausendstel Millimeter dicke Schicht des Kristalls schmolz unter dem Laserstrahl, bevor sie sich erhitzen konnte. "Bisher wusste man nicht eindeutig, dass es so etwas wie eine solche nichtthermische, also nicht durch Temperaturerhöhung verursachte Schmelze überhaupt gibt", hebt Förster hervor. Die Ergebnisse der Arbeiten werden in der morgigen Ausgabe des renommierten Wissenschaftsmagazins "Nature" erscheinen.


Förster, Leiter der Abteilung Röntgenoptik der Friedrich-Schiller-Universität, arbeitet mit seinem Team bereits seit 15 Jahren mit Lasern, die extrem kurze Impulse aussenden. Inzwischen haben die Jenaer Physiker sich bis zu Pulsdauern von 100 bis 200 Femtosekunden heruntergearbeitet - diese Zeit ist kürzer als der Billionste Teil einer Sekunde (10-12). Dass ein so kurzer Impuls bereits ausreicht, um die Atome an der Kristalloberfläche in Bewegung, und damit das Material zum Schmelzen zu bringen, überraschte selbst die Experten. Eine Hitzentwicklung findet erst nach etwa zehn Picosekunden, also nach zehn Billionstel Sekunden, statt.

Um die nichtthermische Schmelze überhaupt sichtbar machen zu können, griffen die Physiker zu einem Trick: Einen Teil des Laserstrahls wandelten sie zum Beobachten des Effektes in Röntgenstrahlen um. Diese ließen sie auf den selben Kristall treffen, auf den sie den anderen Teil des Lasers direkt gelenkt hatten, wobei die Auftreffzeiten einstellbar sind. Der zweite Laserstrahl veränderte durch seine hohe Leistung die Struktur der Kristalloberfläche. "Mit Hilfe der Röntgenstrahlen können wir die Bewegung der Atome sichtbar machen, während mit normalem Licht nur die Darstellung optischer Veränderungen möglich ist", beschreibt Ingo Uschmann die Vorteile des Verfahrens.

Herzstücke des Versuchsaufbaus sind die dabei verwendeten gebogenen Kristalle, mit denen die Röntgenstrahlung auf den zu schmelzenden Kristall geleitet wird. Für das jetzt in "Nature" beschriebene Experiment verwendeten die Jenaer Wissenschaftler einen Quarzkristall, aus dem sie in mühevoller Handarbeit einen maßgeschneiderten Röntgenspiegel angefertigt hatten. Dazu brachten sie eine 0,07 mm dünne Scheibe des Kristalls auf einen gebogenenTräger aus Messing auf. Der Krümmungsradius musste dabei exakt stimmen, um das erwünschte Versuchsergebniss zu erzielen. "Wir sind weltweit die einzige Gruppe, die solche Kristall-Werkstücke mit der erforderlichen Präzision herstellen kann", betont Eckhart Förster.

Interessant sind ihre Arbeiten vor allem für viele andere Forschungsgebiete in der Chemie, der Physik und auch der Strukturbiologie: "Mit derartig kurz gepulsten Laser- und Röntgenstrahlen kann man quasi in Zeitlupe ultraschnelle Prozesse in der Natur beobachten", so Eckhart Förster. Eine technische Anwendung ihrer Ergebnisse ist nach Ansicht von Förster und Uschmann noch nicht unmittelbar absehbar, aber zum Beispiel in der Halbleitertechnologie möglich.

Aufgrund ihrer langjährigen Erfahrung sind die Jenaer Physiker mit ihrer Gruppe international gefragte Partner. Die Versuche zur vorliegenden Veröffentlichung haben sie mit französischen und dänischen Kollegen an einer Großforschungsanlage im französischen Palaiseau durchgeführt. Inzwischen verfügt aber das Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität im Labor von Prof. Dr. Roland Sauerbrey, Dr. Thomas Feurer und Andreas Morack selbst über die entsprechende technische Ausstattung. "Wir erreichen kürzere Impulszeiten als Großforschungseinrichtungen", sagt Förster, "damit bestimmen wir die Weltspitze." Er und seine Kollegen sind in zahlreichen Netzwerken aktiv, so in den EU-geförderten Programmen FAMTO ("Ultra Fast Atomic Movie Tools") und XPOSE ("X-ray Probing of Structural Evolution of Matter").

Ansprechpartner:
Prof. Dr. Eckhart Förster
Forschungsgruppe Röntgenoptik


Tel.: 03641/ 9 47261
Fax: 9 47262
E-Mail: eckhart.foerster@uni-jena.de
Sie finden den Artikel unterhttp://www.nature.com

Susanne Liedtke
Friedrich Schiller Universität
Referat Öffentlichkeitsarbeit
Fürstengraben 1
07743 Jena
Tel: 03641/ 93 10 40
Fax: 03641/ 93 10 42
E-Mail: Susanne.Liedtke@uni-jena.de

Weitere Informationen finden Sie im WWW:

Susanne Liedtke | idw

Weitere Berichte zu: Kristall Laserstrahl Röntgenstrahl

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neuer Blick auf „seltsame Metalle“
17.01.2020 | Technische Universität Wien

nachricht Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik
16.01.2020 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik

Um den Transfer von Forschungsentwicklungen aus dem Bereich der Quantensensorik in industrielle Anwendungen voranzubringen, entsteht am Fraunhofer IAF ein Applikationslabor. Damit sollen interessierte Unternehmen und insbesondere regionale KMU sowie Start-ups die Möglichkeit erhalten, das Innovationspotenzial von Quantensensoren für ihre spezifischen Anforderungen zu evaluieren. Sowohl das Land Baden-Württemberg als auch die Fraunhofer-Gesellschaft fördern das auf vier Jahre angelegte Vorhaben mit jeweils einer Million Euro.

Das Applikationslabor wird im Rahmen des Fraunhofer-Leitprojekts »QMag«, kurz für Quantenmagnetometrie, errichtet. In dem Projekt entwickeln Forschende von...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: Wie Zellen ihr Skelett bilden

Wissenschaftler erforschen die Entstehung sogenannter Mikrotubuli

Zellen benötigen für viele wichtige Prozesse wie Zellteilung und zelluläre Transportvorgänge strukturgebende Filamente, sogenannte Mikrotubuli.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2020

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker lassen Bor-Atome wandern

17.01.2020 | Biowissenschaften Chemie

Infektiöse Proteine bei Alzheimer

17.01.2020 | Biowissenschaften Chemie

Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

17.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics