Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jenaer Physiker schmelzen ohne Hitze

28.02.2001


Den Jenaern Physikern Prof. Dr. Eckhart Förster und Dr. Ingo Uschmann ist es gelungen, die Oberfläche eines Kristalls allein durch die elektromagnetische Energie eines extrem schnell gepulsten Lasers zu schmelzen, noch bevor Hitze einwirken konnte.

Eine weniger als einen tausendstel Millimeter dicke Schicht des Kristalls schmolz unter dem Laserstrahl, bevor sie sich erhitzen konnte. "Bisher wusste man nicht eindeutig, dass es so etwas wie eine solche nichtthermische, also nicht durch Temperaturerhöhung verursachte Schmelze überhaupt gibt", hebt Förster hervor. Die Ergebnisse der Arbeiten werden in der morgigen Ausgabe des renommierten Wissenschaftsmagazins "Nature" erscheinen.


Förster, Leiter der Abteilung Röntgenoptik der Friedrich-Schiller-Universität, arbeitet mit seinem Team bereits seit 15 Jahren mit Lasern, die extrem kurze Impulse aussenden. Inzwischen haben die Jenaer Physiker sich bis zu Pulsdauern von 100 bis 200 Femtosekunden heruntergearbeitet - diese Zeit ist kürzer als der Billionste Teil einer Sekunde (10-12). Dass ein so kurzer Impuls bereits ausreicht, um die Atome an der Kristalloberfläche in Bewegung, und damit das Material zum Schmelzen zu bringen, überraschte selbst die Experten. Eine Hitzentwicklung findet erst nach etwa zehn Picosekunden, also nach zehn Billionstel Sekunden, statt.

Um die nichtthermische Schmelze überhaupt sichtbar machen zu können, griffen die Physiker zu einem Trick: Einen Teil des Laserstrahls wandelten sie zum Beobachten des Effektes in Röntgenstrahlen um. Diese ließen sie auf den selben Kristall treffen, auf den sie den anderen Teil des Lasers direkt gelenkt hatten, wobei die Auftreffzeiten einstellbar sind. Der zweite Laserstrahl veränderte durch seine hohe Leistung die Struktur der Kristalloberfläche. "Mit Hilfe der Röntgenstrahlen können wir die Bewegung der Atome sichtbar machen, während mit normalem Licht nur die Darstellung optischer Veränderungen möglich ist", beschreibt Ingo Uschmann die Vorteile des Verfahrens.

Herzstücke des Versuchsaufbaus sind die dabei verwendeten gebogenen Kristalle, mit denen die Röntgenstrahlung auf den zu schmelzenden Kristall geleitet wird. Für das jetzt in "Nature" beschriebene Experiment verwendeten die Jenaer Wissenschaftler einen Quarzkristall, aus dem sie in mühevoller Handarbeit einen maßgeschneiderten Röntgenspiegel angefertigt hatten. Dazu brachten sie eine 0,07 mm dünne Scheibe des Kristalls auf einen gebogenenTräger aus Messing auf. Der Krümmungsradius musste dabei exakt stimmen, um das erwünschte Versuchsergebniss zu erzielen. "Wir sind weltweit die einzige Gruppe, die solche Kristall-Werkstücke mit der erforderlichen Präzision herstellen kann", betont Eckhart Förster.

Interessant sind ihre Arbeiten vor allem für viele andere Forschungsgebiete in der Chemie, der Physik und auch der Strukturbiologie: "Mit derartig kurz gepulsten Laser- und Röntgenstrahlen kann man quasi in Zeitlupe ultraschnelle Prozesse in der Natur beobachten", so Eckhart Förster. Eine technische Anwendung ihrer Ergebnisse ist nach Ansicht von Förster und Uschmann noch nicht unmittelbar absehbar, aber zum Beispiel in der Halbleitertechnologie möglich.

Aufgrund ihrer langjährigen Erfahrung sind die Jenaer Physiker mit ihrer Gruppe international gefragte Partner. Die Versuche zur vorliegenden Veröffentlichung haben sie mit französischen und dänischen Kollegen an einer Großforschungsanlage im französischen Palaiseau durchgeführt. Inzwischen verfügt aber das Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität im Labor von Prof. Dr. Roland Sauerbrey, Dr. Thomas Feurer und Andreas Morack selbst über die entsprechende technische Ausstattung. "Wir erreichen kürzere Impulszeiten als Großforschungseinrichtungen", sagt Förster, "damit bestimmen wir die Weltspitze." Er und seine Kollegen sind in zahlreichen Netzwerken aktiv, so in den EU-geförderten Programmen FAMTO ("Ultra Fast Atomic Movie Tools") und XPOSE ("X-ray Probing of Structural Evolution of Matter").

Ansprechpartner:
Prof. Dr. Eckhart Förster
Forschungsgruppe Röntgenoptik


Tel.: 03641/ 9 47261
Fax: 9 47262
E-Mail: eckhart.foerster@uni-jena.de
Sie finden den Artikel unterhttp://www.nature.com

Susanne Liedtke
Friedrich Schiller Universität
Referat Öffentlichkeitsarbeit
Fürstengraben 1
07743 Jena
Tel: 03641/ 93 10 40
Fax: 03641/ 93 10 42
E-Mail: Susanne.Liedtke@uni-jena.de

Weitere Informationen finden Sie im WWW:

Susanne Liedtke | idw

Weitere Berichte zu: Kristall Laserstrahl Röntgenstrahl

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

nachricht Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?
16.07.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics