Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fachhochschule Jena: Messen an feinen Strukturen

30.03.2001


Sabine Kopf (vorn) und Sindy Reball bei der

Justierung des Strahlenganges an der

Fouriertransformationsanlage


Tobias Tiedt an der

Fouriertransformationsanlage


Der Fachbereich Physikalische Technik der Fachhochschule Jena konnte im vergangenen Jahr eine optische Fouriertransformationsanlage als Dauerleihgabe von der Universität Bremen übernehmen. Ermöglicht wurde diese Umsetzung dank der seit Jahren bestehenden guten Kontakte, die über Prof. Dr. em. Christian Hofmann von der Fachhochschule Jena und Prof. Dr. em. Siegfried Boseck von der Universität Bremen aufgebaut und gepflegt wurden. Nachdem Prof. Boseck in den Ruhestand verabschiedet wurde und in Bremen die Ausbildung in Optik nicht mehr in gleichem Maße durchgeführt wird, war es der Wunsch von Professor Boseck, diese Anlage, die von ihm entwickelt und aufgebaut wurde, in eine Einrichtung zu bringen, die in der Optikausbildung aktiv ist und auch durch das bestehende Umfeld die Möglichkeit hat, diese Messtechnik anzuwenden und weiterzuentwickeln.

Mit Hilfe des Gerätes ist es möglich, das bei der optischen Abbildung feiner Strukturen entstehende Beugungsbild genau zu vermessen. Dieses Beugungsbild entspricht einer Fouriertransformation des Objektes in der Form des Leistungsspektrums in der x-y-Ebene. Die Fouriertransformation ist ein in der Optik häufig angewendetes Verfahren, welches durch den Mathematiker de Fourier (1768-1830) entwickelt wurde. Bei diesem wird eine beliebige Objektstruktur in eine Anzahl von Sinusschwingungen unterschiedlicher Frequenz und Amplitude zerlegt wird, wobei die Frequenzen bzw. Amplituden jeweils Vielfache bzw. Teile der Grundschwingung sind. Der Abstand der Beugungsmaxima ist eine charakteristische Größe für die Breite der untersuchten Strukturen. Daraus lassen sich die tatsächliche Strukturbreite sowie Störungen in der Regelmäßigkeit von Strukturen ermitteln. Es ist weiterhin möglich, Größen von Partikeln im Rahmen einer Schadstoffanalytik zu bestimmen.

Durch die Herstellung spezieller Filter ist es beispielsweise machbar, direkt an fotografischen Aufnahmen (Negative) eine Korrektur vorzunehmen, um die Bildqualität deutlich zu verbessern. Dazu kann man Amplituden- sowie Phasenfilterungen durchführen, wodurch die Inhalte des Objektes ihrer Bedeutung nach neu gewichtet werden können.
Als Lichtquelle dient dabei ein 15 mW Helium-Neon-Laser mit Aufweitungsoptik für ein Objektfeld mit 50 mm Durchmesser. Der zu vermessende Ortfrequenzbereich umfasst bis zu 40 Linienpaare pro Millimeter, das entspricht einem Gitterabstand von 25 µm. Die Messdynamik erreicht acht Dekaden, d.h. man kann Messungen mit Leistungsunterschieden von 100 Watt bis zu einem Mikrowatt durchführen.

Aufbauend auf den in Bremen gemachten Erfahrungen will der Fachbereich diese Anlage in die Ausbildung der Studenten im Rahmen der Optischen Messtechnik und der Umweltmesstechnik mit einbeziehen. Weiterhin soll auch im Rahmen des OPTONET, in dem die Fachhochschule Mitglied ist, eine Zusammenarbeit mit der Industrie und mit entsprechenden Forschungseinrichtungen gefördert werden. Denkbar ist das durch die Vergabe von Praktikums- oder Diplomarbeiten, die sich mit dieser speziellen Messtechnik beschäftigen, oder direkt über Drittmittelthemen.

Annette Sell | Fachhochschule Jena

Weitere Berichte zu: Fouriertransformation Frequenz Messtechnik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unsterbliche Quantenteilchen: Der Zyklus von Zerfall und Wiedergeburt
14.06.2019 | Technische Universität München

nachricht Ins Innere von Materialien blicken
13.06.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Industrie 4.0 im Fräsprozess: Geringere Schwingungen durch aktive Dämpfung und angepasste Drehzahlen

17.06.2019 | Informationstechnologie

Mit dem Milbentaxi zum Nachbarwirt: Honigbienen-Parasit Varroa-Milbe wird auch Wildbienen gefährlich

17.06.2019 | Biowissenschaften Chemie

Trennmittelfrei: ReleasePLAS®-Technologie ersetzt Silikonbeschichtung beim Wachsspritzguss

17.06.2019 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics