Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleiter Lithium

04.11.2002


Das leichteste Metall wird bei minus 257 Grad und unter extrem hohem Druck zum Supraleiter mit einer der höchsten bisher beobachteten Sprungtemperaturen unter allen chemischen Elementen.



Supraleitung in Lithium haben Wissenschaftler der Hochdruckgruppe am Max-Planck-Institut für Chemie in Mainz und des Geophysical Laboratory of the Carnegie Institution in Washington/USA, entdeckt (Sciencexpress, 17. Oktober 2002). Sie erreichten diesen Erfolg zur gleichen Zeit wie eine japanische Forschergruppe, die ihre Ergebnisse eine Woche zuvor in "Nature" veröffentlicht hatte (Nature, 10. Oktober 2002). Der Übergang zur Supraleitung tritt in Lithium bei einer Temperatur von 9 Kelvin (264 Grad Celsius) und einem Druck von 230.000 Atmosphären (23 GPa) ein, wobei diese so genannte Sprungtemperatur bei einem Druck von 80 GPa sogar auf 16 Kelvin ansteigt. Das ist eine der höchsten Sprungtemperaturen eines chemischen Elements; doch sie liegt viel niedriger als theoretisch vorausgesagt. Aus Sicht der Forscher können diese Ergebnisse helfen, die Theorie zur Supraleitung so weiter zu entwickeln, dass sich die Sprungtemperatur eines Elements künftig schon vor einem Experiment genau voraussagen lässt.



Supraleitung tritt dann auf, wenn ein Material bis auf eine bestimmte Temperatur, die so genannte Sprung- oder Übergangstemperatur, abgekühlt wird und der elektrische Widerstand verschwindet. Dieser Effekt, bereits 1911 von dem niederländischen Physiker Heike Kamerlingh Onnes entdeckt, ist bis heute noch nicht vollständig verstanden. Besonders schwierig gestaltet sich die Vorhersage, bei welcher Temperatur tatsächlich der Übergang in den supraleitenden Zustand eintritt. Deshalb ist die Untersuchung von Lithium und anderen metallischen Elementen weiterhin von fundamentaler Bedeutung .

Lithium ist das "einfachste" und leichteste Metall. Seine Kristallstruktur ist hochsymmetrisch und seine elektronischen Eigenschaften lassen sich durch ein Modell gut beschreiben. Doch Supraleitung konnte bisher in Lithium bei normalem Druck nicht nachgewiesen werden. Deshalb fand dieses Metall erst dann wieder gesteigertes Interesse in der Forschung, als Wissenschaftler im Jahr 2000 voraussagten, dass dieses Element unter erhöhtem Druck verschiedene Strukturumwandlungen durchlaufen könnte, die möglicherweise zu einem Zustand "gepaarter Atome" geringer Symmetrie und Quasi-Isolator-Eigenschaften führen würden, ähnlich dem des molekularen Wasserstoffs.

Weltweit starteten seither viele Experimente und theoretische Untersuchungen zu Lithium. Die experimentellen Untersuchungen werden sehr erschwert, da Lithium hochreaktiv und in einem Hochdruckexperiment sehr schwierig zu handhaben ist. Im Jahr 2000 gelang es erstmals, eine Hochdruckphase von Lithium mit Hilfe der Röntgenbeugung nachzuweisen. Diese so genannten Phasenübergänge waren begleitet von einer starken Elektron-Gitter-Kopplung; Berechnungen ließen daraufhin erwarten, dass Supraleitung in Lithium bei einer Sprungtemperatur zwischen 60 und 80 Grad Kelvin eintreten könnte.

Nur zwei Jahre später ist es jetzt zwei Forschergruppen unabhängig voneinander zur gleichen Zeit gelungen, Supraleitung in Lithium tatsächlich nachzuweisen. Ihre Entdeckung veröffentlichte die japanische Gruppe am 10. Oktober 2002 in "Nature", und das Team aus dem Max-Planck-Institut für Chemie und des Geophysical Laboratory am 17. Oktober in "Sciencexpress". Die Forscher der Universität Osaka/Japan stellten fest, dass der elektrische Widerstand in Lithium bei einem Druck oberhalb von 30 GPa (300.000 Atmosphären) stark zurückggeht, und dass dieses Phänomen bei Anlegen eines starken magnetischen Feldes vollständig in sich zusammenbricht - klare Indizien für den supraleitenden Zustand. Die Wissenschaftler beobachteten zudem, dass die Sprungtemperatur bei 48 GPa auf 20 Kelvin ansteigt - die bisher höchste Sprungtemperatur unter allen chemischen Elementen .

Die in "Sciencexpress" veröffentlichte Studie der Hochdruck-Gruppe des Mainzer Max-Planck-Instituts für Chemie und des Geophysical Laboratory of the Carnegie Institution in Washington/USA stimmt mit den Ergebnissen der japanischen Wissenschaftler grundsätzlich überein. Die Mainzer Forscher nutzten eine neuartige Diamant-Hochdruck-Zelle, in der Lithium von Diamant-Stempeln zusammengepresst wird und sein elektrischer Widerstand sowie der Einfluss eines magnetischen Feldes gemessen werden können. Die Forscher stellten fest, dass die Sprungtemperatur bei Lithium von 9 Kelvin bei einem Druck von 23 GPa bis auf 16 Kelvin bei 80 GPa ansteigt.

"Die experimentell gemessene Sprungtemperatur für Lithium steht offensichtlich im Widerspruch zu den in der Theorie vorausgesagten, viel höheren Werten", sagt Mikhail I. Eremets, einer der Autoren der "Science online"-Veröffentlichung. "Von daher brauchen wir jetzt ganz neue theoretische Verfahren, ähnlich jenen, die für metallischen Wasserstoff vorgeschlagen wurden. Ziel ist eine Theorie, mit der die Sprungtemperatur eines Materials schon vor dem Experiment exakt vorausgesagt werden kann."

Den Mainzer Max-Planck-Wissenschaftlern war es erst kürzlich gemeinsam mit ihren Kollegen aus Washington gelungen, Supraleitung in Bor, einem weiteren leichten Element , nachzuweisen (Mikhail I. Eremets, Viktor V. Struzhkin, Ho-kwang Mao, and Russell J. Hemley: Superconductivity in Boron, Science 2001 July 13; 293: 272-274). Sie fanden mit 11 Kelvin bei Born eine relativ hohe Sprungtemperatur, die sich - wie bei Lithium - mit steigendem Druck noch erhöht.

Die neuen Erkenntnisse geben der experimentellen und theoretischen Forschung über Supraleiter insgesamt starken Auftrieb, vor allem bei der Suche nach Hochtemperatur-Supraleitfähigkeit in Verbindungen aus leichten Elementen bei normalem Druck. Zudem sind diese Ergebnisse wichtig für die Suche nach Supraleitung in Wasserstoff, dem leichtesten aller chemischen Elemente . Die Theorie sagt bisher voraus, dass molekularer Wasserstoff bei einem Druck von 300 bis 400 GPa schon bei Raumtemperatur metallische Eigenschaften annimmt und zum Supraleiter wird.

Dr. Mikail Eremets
Max-Planck-Institut für Chemie, Mainz
Hochdruck-Gruppe
Tel.: 06131-305-312
E-Mail: eremets@mpch-mainz.mpg.de

Dr. Viktor Struzhkin
Geophysical Laboratory of the Carnegie Institution of Washington, DC, USA
Tel.: 001-202-478-8952
E-Mail: Struzhkin@gl.ciw.edu

Dr. Mikail Eremets | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpch-mainz.mpg.de
http://www.gl.ciw.edu

Weitere Berichte zu: GPa Lithium Sprungtemperatur Supraleiter Supraleitung Wasserstoff

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

nachricht Weltrekord: Schnellste 3D-Tomographien an BESSY II
08.08.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Arctic Ocean 2018 - Forscher untersuchen Wolken und Meereis in der Arktis

"Arctic Ocean 2018": So heißt die diesjährige Forschungsexpedition des schwedischen Eisbrechers ODEN in der Arktis, an der auch ein Wissenschaftler der Universität Leipzig beteiligt ist. Noch bis zum 25. September wollen die etwa 40 Forscher an Bord vor allem das mikrobiologische Leben im Ozean und im Meereis untersuchen und wie es mit der Wolkenbildung in der Arktis zusammenhängt.

Während der Fahrt durch die Arktis, die Ende Juli gestartet ist, sollen im Rahmen der Kampagne MOCCHA 2018 (Microbiology-Ocean-Cloud-Coupling in the Hight...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

Herausforderung China – Wissenschaftler aus der ganzen Welt diskutieren miteinander auf UW/H-Tagung

03.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltkleinster Transistor schaltet Strom mit einzelnem Atom in festem Elektrolyten

13.08.2018 | Energie und Elektrotechnik

Your Smartphone is Watching You: Gefährliche Sicherheitslücken in Tracker-Apps

13.08.2018 | Informationstechnologie

Was wir von Ameisen und Amöben über Koordination und Zusammenarbeit lernen können

13.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics