Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Blick in das Innere von Antiwasserstoff-Atomen

30.10.2002


Erstmals ist es Wissenschaftlern der ATRAP Kollaboration am europäischen Teilchenphysik-Zentrum CERN gelungen, einen Blick in das Innere von Antiwasserstoff-Atomen zu werfen.


An der Zusammenarbeit sind auch Wissenschaftler des Forschungszentrums Jülich, des Max-Planck-Instituts für Quantenoptik sowie der Ludwig-Maximilians-Universität München beteiligt. Der Aufsehen erregende Nachweis der Antiwasserstoff-Atome erfolgt durch ein neuartiges Verfahren und liefert erstmals ein eindeutiges, störungsfreies Signal. Die Wissenschaftler sind jetzt in der Lage, pro Stunde mehr Antiwasserstoff-Atome zu erzeugen, als jemals zuvor nachgewiesen wurden. In einer wissenschaftlichen Veröffentlichung, die in Physical Review Letters erscheinen wird, wird von mehr als 1400 kalten Antiwasserstoff-Atomen berichtet.

Wasserstoff ist das einfachste Atom und besteht aus einem Elektron und einem Proton. Der Antimaterie-Partner des Protons ist das Antiproton und der des Elektrons das Positron. Aus diesen Antimaterie-Bausteinen setzt sich das Antiwasserstoff-Atom zusammen. Die elementaren Teilchen und ihre entsprechenden Antiteilchen haben dieselbe Masse, dieselbe Ladung, aber ein entgegengesetztes Ladungsvorzeichen. Wenn ein Teilchen mit seinem Antiteilchen zusammentrifft, vernichten sie sich gegenseitig und es wird die Energie freigesetzt, die der Masse entspricht.


Die gegenwärtig akzeptierte Theorie der Physik besagt, dass das Antiwasserstoff-Atom und das gewöhnliche Wasserstoff-Atom genau gleiche Eigenschaften haben. Diese Vorhersage wurde allerdings noch nie experimentell geprüft. Neuere angedachte Modelle lassen geringe Unterschiede zwischen Antiwasserstoff und Wasserstoff zu. Die Aufklärung dieser wichtigen Fragestellung wird ein zentraler Bestandteil der zukünftigen Untersuchungen sein.

Die ATRAP Kollaboration am europäischen Teilchenphysik-Zentrum CERN in der Nähe von Genf setzt sich aus Wissenschaftlern der Harvard Universität, des Forschungszentrums Jülich, des CERN, des Max-Planck-Instituts für Quantenoptik sowie der Ludwig-Maximilians-Universität München und der York Universität in Toronto zusammen. Im Laufe des Jahres hat die ATRAP Kollaboration mehrere Methoden zur Erzeugung von Antiwasserstoff geprüft, um optimale Voraussetzungen für physikalische Untersuchungen dieses Atoms zu schaffen.

Inzwischen können die Forscher pro Stunde nicht nur mehr Antiwasserstoff-Atome erzeugen, als jemals zuvor nachgewiesen wurden, es ist ihnen sogar gelungen, erstmals einen flüchtigen Blick in das Innere jener Antimaterie-Atome zu werfen. Die Temperatur der erzeugten Antiwasserstoff-Atome lag dabei nur wenige Grad über dem absoluten Nullpunkt bei ?273 Grad Celsius. Damit sind die Antiatome schon fast so kalt - also langsam -, dass sie in Magnetfeldern ausreichend lange gespeichert werden können, um Präzisions-Messungen an ihnen durchzuführen.

Mit der Speichermöglichkeit vieler Antiwasserstoff-Atome sind Laserexperimente absehbar, die winzige Unterschiede zwischen Antiwasserstoff und Wasserstoff offenbaren können, falls es sie gibt. Messungen dieser Art werden grundlegende Theorien der Physik einer Prüfung unterziehen und geben möglicherweise sogar einen Hinweis auf das Mysterium, warum unser Universum ausschließlich aus Materie besteht und nichts auf die Existenz einer Welt aus Antimaterie deutet.

Eine neue Grundidee führt zum Erfolg

Wenn man ein Antiwasserstoff-Atom zwischen die beiden Pole einer Batterie bringt, wird die positive Ladung des Positrons zum negativen Pol gezogen, während die negative Ladung des Antiprotons vom positiven Pol der Batterie angezogen wird. Ist die Batteriespannung groß genug, wird das Atom auseinander gerissen. Bei hinreichend weitem Abstand von Positron und Antiproton im Antiwasserstoff-Atom genügt eine kleine Spannung, um das Atom auseinander zu reißen. Sind Positron und Antiproton dagegen näher beieinander, muss eine höhere Spannung angelegt werden, um das Antiwasserstoff-Atom zu zerlegen. Dies ist die Grundidee des Verfahrens, das die ATRAP Forscher verwendet haben, um die Antiwasserstoff-Atome zu untersuchen.

Die quantenmechanischen Zustände der Atome unterscheiden sich in dem mittleren Abstand von Antiproton und Positron. Sie verraten dem Physiker wichtige Details über die Struktur des Antiwasserstoffs. Einen ersten Hinweis auf solche Zustände der Atome haben die Forscher gewonnen, indem sie bestimmten, bei welchen elektrischen Feldern die Antiwasserstoff-Atome in ihrer Apparatur zerlegt werden.

Indem sie die Antiwasserstoff-Atome wie oben beschrieben zerlegen, können die Wissenschaftler von ATRAP Störsignale beim Nachweis der Antiatome vollkommen unterdrücken. Diese Vorgehensweise ist bislang einzigartig in diesem Gebiet. Bei herkömmlichen Experimenten entstehen typischerweise Störereignisse, die nicht von echten Antiwasserstoff-Signalen unterschieden werden können. Dieser Umstand erlaubte lediglich eine Abschätzung des Mittelwertes der falschen Ereignisse. Einzelnen Signalen kann hingegen nicht "Wahr" oder "Falsch" zugeordnet werden. In dem störungsfreien Nachweis, den die Forscher von ATRAP erstmals erreicht haben, ist jedes beobachtete Antiwasserstoff-Signal "echt".

Neben ATRAP widmet sich am CERN noch ein zweites Experiment, ATHENA, der Untersuchung von Antiwasserstoff-Atomen. Beide verwenden für die Erzeugung dieses Elementes der Antimaterie Antiprotonen, die vom "Antiprotonen Abbremser" (engl. Antiproton Decelerator) des CERN geliefert werden. Der ATHENA Kollaboration stehen wesentlich höhere Positronenraten zur Verfügung. Wie kürzlich in der Zeitschrift Nature berichtet, wurde die Erzeugung von Antiwasserstoff im ATHENA Experiment dadurch nachgewiesen, dass die erzeugten Antiwasserstoff-Atome auf gewöhnliche Materie treffen und ihre Existenz durch die gleichzeitige Vernichtung der Bestandteile, von Antiprotonen und Positronen, verraten.

Beteiligte Institutionen und ihre Kontaktpersonen:

Forschungszentrum Jülich
Professor Walter Oelert
IKP-1, Forschungszentrum Jülich
D-52425 Jülich, Germany
Tel.: +49 2461 61 4156 (3091)
Fax: +49 2461 61 3930
CERN-Tel.: +41 22 76 79813 (75829) (71758)
Handy: +49 178 7190524
E-mail: w.oelert@fz-juelich.de

Max-Planck-Institut für Quantenoptik (Garching, Germany)
und Ludwig-Maximilians-Universität München (Germany)
Dr. Jochen Walz (CERN-Fellow 2001--2002)
Hans-Kopfermann-Strasse 1
D-85748 Garching, Germany
Tel.: +49 8932 905 281 (207)
FAX: +49 8932 905 207
CERN-Tel.: +41 22 76 79813
E-mail: jcw@mpq.mpg.de

Harvard Universität (Cambridge, MA, USA)
Professor Gerald Gabrielse
Physics Department
Harvard University
Cambridge, MA 02138, USA
Tel.: +001 617 495 4381
Handy: +001 617 834 7929
CERN-Tel.: +41 22 76 79813
CERN-Handy: +41 79 201 4281
E-mail: gabrielse@physics.harvard.edu

York Universität
Professor Eric Hessels
Department of Physics and Astronomy
Petrie Science Building
Toronto, Ontario M3J 1P3, Canada
E-mail: hessels@york.ca
CERN-Tel.: +41 22 76 79813

Peter Schäfer | idw
Weitere Informationen:
http://www.fz-juelich.de

Weitere Berichte zu: ATRAP Antiproton Antiwasserstoff-Atom CERN Kollaboration

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kosmische Schlange
20.11.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht InSight: Touchdown auf dem Mars
19.11.2018 | Max-Planck-Institut für Sonnensystemforschung

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics