Erstmals gemessen: die Reibung zwischen einzelnen Atomen

Erläuterung zur Illustration von Alexander Herrnberger im Text

Augsburger Physiker ermöglichen mit neuartiger Frequenzmodulations-Lateralkraftmikroskopie Einblick in die atomare Natur der Reibung —

Wissenschaftlern am Augsburger Lehrstuhl für Experimentalphysik VI/Elektronische Korrelationen und Magnetismus (Prof. Dr. Jochen Mannhart) ist es gelungen, erstmals die Reibung zwischen einzelnen Atomen zu messen. Priv. Doz. Dr. Franz Gießibl und Kollegen berichten über diesen wissenschaftlichen Erfolg im Artikel Nr. 1605 der aktuellen Ausgabe der US-amerikanischen Zeitschrift „Proceedings of the National Academy of Sciences“ (PNAS)*. Mit der neuen rasterkraftmikroskopischen Technik kann künftig nicht nur die Reibung detaillierter studiert werden; vielmehr eröffnet sich hier auch ein Weg zu einem besseren, insbesondere für die Nanotechnologie wichtigen Verständnis der Bindungsverhältnisse von Oberflächenatomen.

Reibung ist ein Alltagsphänomen: Schiebt man einen Stuhl über den Fußboden, muss man dazu Energie aufwenden. Auf mikroskopischer Skala betrachtet ist dies ein großes Rätsel, denn die Kräfte zwischen den Bestandteilen des Stuhls und des Fußbodens, zwischen den einzelnen Atomen also, sind konservativ. „Konservativ“ bedeutet in diesem Zusammenhang, dass man die Energie, die man aufwenden muss, wenn man zwei aneinander gebundene Atome auseinander zieht, zurück bekommt, wenn man deren Abstand wieder verringert. Auf die Welt im Großen übertragen würde das heißen, dass man den Stuhl zuerst zwar anschieben muss, um ihn zu verschieben, dass er dann aber, wenn er einmal angeschoben ist, eigentlich ungebremst weiterrutschen müsste.

ATOMARE REIBUNG: 1929 ERSTMALS BESCHRIEBEN …

Weshalb dies nicht so ist – den Mechanismus also, aus dem sich atomare Reibung ergibt – hat G. A. Tomlinson bereits im Jahr 1929 beschrieben, und zwar als das „gegenseitige Anzupfen einzelner Oberflächenatome“, wenn diese durch laterale Kräfte ausgelenkt werden und wieder in ihre Ruhelagen „zurückschnalzen“. Reibung ist dabei entstehende Energiedissipation: der durch die Umwandlung der aufgewandten Energie in Wärme verursachte Verlust an mechanisch nutzbarer Energie. Diesen Mechanismus kann man in der Makrowelt nachbilden: Spannt man die Saite einer Gitarre, so muss man dazu über die Wegstrecke der Saitenauslenkung eine Kraft ausüben und damit Energie aufwenden. Wenn man die Saite langsam zurückbewegt, bleibt die gespeicherte Energie mechanisch nutzbar – man könnte zum Beispiel ein Gewicht damit hochheben. Falls die Saite beim Spannen aber entwischt, ist die aufgewandte Energie nicht mehr mechanisch nutzbar – sie wird als Schall abgestrahlt und letztlich in Wärme verwandelt.

… UND 2002 ERSTMALS EXPERIMENTELL NACHGEWIESEN UND GEMESSEN

Die Messungen der Augsburger Physiker sind nun der erste experimentelle Nachweis dieses vor gut 70 Jahren erstmals beschriebenen Mechanismus, der atomare Reibung verursacht. Mit Experimenten an einem neuartigen Rasterkraftmikroskop ist es Gießibl und Kollegen gelungen zu zeigen, dass der Energieverlust und damit die Reibung dann auftritt, wenn zwei Atome so weit auseinandergezogen werden, dass deren maximale Haftkraft überschritten wird. Die Atome „schnalzen“ dann in ihre Ausgangslage zurück, wo sie mit einer Frequenz von Tera-Hertz (1 000 000 000 000 Schwingungen pro Sekunde) oszillieren und die gespeicherte Energie in Form von Wärme an ihre Umgebung abgeben. Dieser „Tomlinson“-Mechanismus ist der wesentliche für Reibung verantwortliche Effekt. Daneben gibt es noch kleinere Beiträge zur Reibungskraft, z. B. elektronische Effekte.

FREQUENZMODULATIONS-LATERALKRAFTMIKROSKOPIE

Um die Reibungskraft zwischen einer Wolframspitze und einer Siliziumoberfläche zu messen, benutzten die Augsburger Physiker die Frequenzmodulations-Lateralkraftmikroskopie, eine spezielle Variante der Rasterkraftmikroskopie. Die Rasterkraftmikroskopie nutzt stets einen empfindlichen Federbalken mit einer atomar scharfen Spitze, um die Kräfte zwischen dem Spitzenatom und einer Oberfläche zu messen. Bei der Frequenzmodulations-Lateralkraftmikroskopie wird die Spitze, die mit konstanter Amplitude parallel zu einer Oberfläche schwingt, über diese Oberfläche gerastert. Der Reibungsverlust zwischen Spitzen- und Probenatom entspricht der einfach zu messenden Energie, die zur Aufrechterhaltung einer konstanten Amplitude nötig ist.

_______________________________________________________

ZUR ILLUSTRATION:

Der Elementarprozess der Reibung wird mit einem neuartigen Rasterkraftmikroskop studiert. Eine scharfe Spitze, die mit konstanter Amplitude parallel zu einer Siliziumoberfläche schwingt, wird über eine Oberfläche gerastert. Weil die Spitze an den Umkehrpunkten die höchste Aufenthaltswahrscheinlichkeit aufweist, erscheint jedes Atom als Doppelhöcker. Die zur Aufrechterhaltung einer konstanten Amplitude nötige Energie kann einfach gemessen werden und entspricht dem Reibungsverlust zwischen Spitzen- und Probenatom.
_______________________________________________________

KONTAKT UND WEITERE INFORMATIONEN:

Lehrstuhl für Experimentalphysik VI/EKM, Universität Augsburg, 86135 Augsburg,
o PRIV. DOZ. DR. FRANZ J. GIESSIBL,
Telefon: +49-821-598-3675, Telefax.: +49-821-598-3652
E-Mail: franz.giessibl@physik.uni-augsburg.de
o PROF. DR. JOCHEN MANNHART
Telefon: +49-821-598-3651, Telefax.: +49-821-598-3652
E-Mail: jochen.mannhart@physik.uni-augsburg.de
_______________________________________________________

*) Der Artikel ist unter dem Titel „FRICTION TRACED TO THE SINGLE ATOM“ BY FRANZ J. GIESSIBL, MARKUS HERZ, AND JOCHEN MANNHART, UNIVERSITAT AUGSBURG am 27. August 2002 in PNAS Online (Abstract: http://www.pnas.org/cgi/content/abstract/182160599v1) erschienen. Proceedings of the National Academy of Sciences (PNAS) ist eine der weltweit am häufigsten zitierten multidisziplinären Wissenschaftszeitschriften. PNAS erscheint 14-tägig als Print-Version und täglich in einer Online-Ausgabe ( http://www.pnas.org )

Media Contact

Klaus P. Prem idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer