Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Streifen statt Schichten: Miniaturisierung magnetischer Sensoren durch Ionentechnik

06.06.2008
Magnetische Sensoren und andere Anwendungen magnetischer Materialien sind vielleicht bald in noch kleineren Dimensionen als bisher möglich. Denn Dresdner Wissenschaftler konnten erstmalig einen bislang nur für ausgedehnte magnetische Schichtsysteme bekannten Effekt in einer magnetischen Mikrostruktur realisieren. Durch diese Entdeckung können magnetische Sensoren prinzipiell noch leistungsfähiger werden. Die Ergebnisse wurden kürzlich in der Fachzeitschrift "Advanced Materials" veröffentlicht.

Fortschreitende Miniaturisierung ist ein wichtiger Motor für technische Weiterentwicklungen. Das zeigt sich gut an Festplattenlaufwerken, die bei einer hohen Speicherdichte heute so schmal sind, dass sie in schlanke Laptops passen. Für Festplatten werden ferromagnetische Materialien, also Dauermagneten z. B. aus Kobalt-Legierungen, verwendet.

Sie liegen in mehrlagigen magnetischen Schichtsystemen vor, wobei die einzelnen Schichten oft nur wenige Atomlagen dick sind. Lassen sich solche Systeme noch weiter miniaturisieren und wenn ja, welche Eigenschaften zeigen diese? Mit dieser Frage beschäftigen sich Wissenschaftler vom Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) Dresden und vom Forschungszentrum Dresden-Rossendorf (FZD). Sie griffen die bekannte Tatsache auf, dass es nicht ausreicht, die Dicke der einzelnen Schichten zu reduzieren.

Eine vielversprechende Alternative ist es, die typischen Eigenschaften der unterschiedlichen Materialschichten in einer einzelnen Schicht zu kombinieren, wie es den Forschern jetzt gelang. Sie stellten eine hauchdünne gestreifte Schicht her, bei der die Grenzen zwischen den einzelnen Streifen den Grenzen zwischen den einzelnen Lagen eines Schichtsystems entsprechen.

... mehr zu:
»FZD »Sensor

Übliche Schichtsysteme sind aus einzelnen Lagen hartmagnetischer und weichmagnetischer Materialien aufgebaut. Beides ist für die Funktionsfähigkeit magnetischer Bauteile wichtig. Hartmagnetische Materialien besitzen eine stabile magnetische Ausrichtung, weichmagnetische Materialien dagegen ändern ihre Magnetisierungsrichtung durch Anlegen eines magnetischen Feldes leicht, d. h. sie lassen sich leicht ummagnetisieren. Dieser Effekt wird z. B. angewendet, wenn in magnetischen Bits gespeicherte Daten durch den Lesekopf der Festplatte ausgelesen werden. So haben ultradünne magnetische Schichtsysteme die Datenspeicherung revolutioniert. Zu verdanken ist das der Entdeckung des Riesenmagnetowiderstand-Effekts (engl. giant magnetoresistance effect, kurz GMR), wofür Peter Grünberg und Albert Fert im vergangenen Jahr den Nobelpreis für Physik erhielten. Ähnliche Schichtsysteme finden sich aber auch in Magnetsensoren, die man überall im Alltag - z. B. bei Drehreglern in Stereoanlagen - antrifft.

Um magnetische Bauteile weiter zu miniaturisieren, sind die Eigenschaften sowohl hartmagnetischer als auch weichmagnetischer Materialien wichtig. Die Dresdner Wissenschaftler haben nun erstmalig gezeigt, dass man Materialien unterschiedlicher magnetischer Härte auch in einer einzelnen Schicht - im Gegensatz zu den bisherigen mehrlagigen Schichtsystemen - durch den Beschuss mit Fremdatomen im Mikrometerbereich kombinieren kann. Diese Behandlung mit Fremdatomen macht das ursprünglich hartmagnetische Material magnetisch weicher. Von oben betrachtet ergibt die neue Struktur ein Streifenmuster, da beide Materialsysteme in seitlichem Kontakt stehen. Die Erkenntnis der Dresdner Wissenschaftler dabei: Auch in einer einzelnen magnetischen Schicht beeinflussen die Grenzen zwischen den Materialien - auch Domänenwände genannt - das Ummagnetisierungsverhalten. Die neue Technologie hat den Vorteil, dass die Domänenwände mittels optischer Mikroskopie sichtbar gemacht (Abb. 1) und das Ummagnetisierungsverhalten als Ganzes untersucht werden kann.

Die Forscher wollen nun mit der Strukturierung in den Nanometer-Bereich vordringen, um die physikalischen Effekte bei einer größtmöglichen Miniaturisierung zu untersuchen. Dr. Jürgen Fassbender, Physiker am FZD, erläutert: "Es ist zu erwarten, dass ab einer bestimmten Strukturgröße weitere völlig neue Effekte auftreten."

Veröffentlichung:
J. McCord, L. Schultz, J. Fassbender "Hybrid soft-magnetic lateral exchange spring films created by ion irradiation", in: Advanced Materials 11/2008 (DOI: 10.1002/adma.200700623).
Ansprechpartner im FZD:
Dr. Jürgen Fassbender
Institut für Ionenstrahlphysik und Materialforschung
Forschungszentrum Dresden-Rossendorf (FZD)
Tel.: 0351 260 - 3096
j.fassbender@fzd.de
Ansprechpartner im IFW:
Dr. Jeffrey McCord
Institut für Metallische Werkstoffe
IFW Dresden
Tel.: 0351 4659 - 204
j.mccord@ifw-dresden.de
Pressekontakt im FZD:
Dr. Christine Bohnet
Presse- und Öffentlichkeitsarbeit, Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Fax: 0351 260 - 2700
c.bohnet@fzd.de
Pressekontakt im IFW:
Dr. Carola Langer
Tel.: 0351 4659 - 234
c.langer@ifw-dresden.de

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www3.interscience.wiley.com/journal/119816544/issue
http://www.fzd.de/

Weitere Berichte zu: FZD Sensor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein ultraschnelles Mikroskop für die Quantenwelt
24.01.2020 | Max-Planck-Institut für Festkörperforschung

nachricht Solar Orbiter: Generalprobe für das Doppelteleskop PHI
22.01.2020 | Max-Planck-Institut für Sonnensystemforschung

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Im Focus: Integrierte Mikrochips für elektronische Haut

Forscher aus Dresden und Osaka präsentieren das erste vollintegrierte Bauelement aus Magnetsensoren und organischer Elektronik und schaffen eine wichtige Voraussetzung für die Entwicklung von elektronischer Haut.

Die menschliche Haut ist faszinierend und hat viele Funktionen. Eine davon ist der Tastsinn, bei dem vielfältige Informationen aus der Umgebung verarbeitet...

Im Focus: Dresdner Forscher entdecken Mechanismus bei aggressivem Krebs

Enzym blockiert Wächterfunktion gegen unkontrollierte Zellteilung

Wissenschaftler des Universitätsklinikums Carl Gustav Carus Dresden im Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) haben gemeinsam mit einem...

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Minutiöse Einblicke in das zelluläre Geschehen

24.01.2020 | Biowissenschaften Chemie

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungsnachrichten

Ein ultraschnelles Mikroskop für die Quantenwelt

24.01.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics