Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optik im Nanomaßstab - Auf dem Weg zum ultraschnellen Computer

27.05.2008
Die Realisierung von ultraschnellen Computern, bei denen die Information mittels Licht verarbeitet wird, scheiterte bis dato an einem durch die Natur des Lichts gegebenen Größenproblem: Die optischen Bauelemente sind noch zu groß, um in ausreichender Zahl auf einem Chip untergebracht zu werden.

Forscher der Ludwig-Maximilians-Universität (LMU) München am Lehrstuhl für Photonik und Optoelektronik von Professor Jochen Feldmann konnten nun aber in Zusammenarbeit mit der Firma Roche Diagnostics aus kleinsten Goldkügelchen ein optisches Bauelement entwickeln, das weniger als ein Zehntausendstel Millimeter groß ist. Das Licht wird hierbei zwischen die Kügelchen gequetscht.

Mit einem derartigen Nano-Resonator könnte jetzt ein Miniatur-Laser in derselben Größenordnung Wirklichkeit werden. "Solche für das Licht eigentlich zu kleinen Nano-Bauelemente sind eine wichtige Voraussetzung für Chip-basierte Computer, die mit Licht rechnen sollen", sagt Feldmann. Die jetzt in der Fachzeitschrift "Physical Review Letters" veröffentlichten Forschungsergebnisse entstanden im Rahmen des Exzellenzclusters "Nanosystems Initiative Munich" (NIM).

Von Computern, die mit Licht statt mit elektrischem Strom funktionieren, träumen Wissenschaftler schon seit vielen Jahren. Der Vorteil liegt auf der Hand: Lichtstrahlen bestehen aus Photonen, also aus Teilchen ohne Ladung, die sich gegenseitig nicht beeinflussen. Überlagern sich etwa zwei Lichtstrahlen, dann kommt es nicht zu einer Störung der übertragenen Informationen. Dies wird bereits jetzt bei der Hochgeschwindigkeits-Datenübertragung in Glasfaserkabeln ausgenutzt, bei denen optische Signale unterschiedlicher Frequenzen gleichzeitig auf engstem Querschnitt verschiedene Daten übermitteln.

... mehr zu:
»Nanometer »Resonator

In herkömmlichen Computern dagegen werden negativ geladene Elektronen zur Informationsübertragung genutzt. Aber auch die Verarbeitung von Informationen könnte mit Licht deutlich schneller vonstatten gehen, denn optische Computer könnten große Mengen unterschiedlicher Daten nicht nur gleichzeitig übertragen, sondern auch viel schneller bearbeiten.

Ein grundlegendes Problem konnte bislang aber noch nicht gelöst werden. Die Erzeugung, der Transport und die Verarbeitung von Lichtwellen auf klassische Weise, etwa in einer Glasfaser, erfordern Strukturen, die mindestens so groß sind wie die halbe Wellenlänge des Lichtes selbst. Und die liegt für sichtbares Licht bei einigen hundert Nanometern. Zum Vergleich: Selbst die Leiterbahnen heutiger Computer-Schaltkreise sind zehnmal schmaler. Um eine vergleichbare Miniaturisierung bei Licht-Computern zu erreichen, sind also neuartige Konzepte gefragt. Ein zentraler Punkt ist dabei die Entwicklung von ultrakleinen optischen Bauelementen im Nanometer-Maßstab.

Ein wichtiger Schritt ist jetzt gelungen. Denn Feldmann und seine Forscherkollegen konnten erstmals das wichtigste Bauteil eines Lasers, den optischen Resonator, im Nanometer-Maßstab entwickeln. Dafür setzten sie in Zusammenarbeit mit der Firma Roche Diagnostics in Penzberg "biochemische" Tricks auf unkonventionelle Weise ein - und zwar mit Erfolg. In einem optischen Resonator wird Licht zwischen zwei Spiegeln hin- und her reflektiert, um eine Verstärkung zu erzielen. Dabei ist der Abstand der beiden Spiegel entscheidend. Er muss ein Vielfaches der halben Lichtwellenlänge betragen. Die Dimensionen des von den Münchner Wissenschaftlern entwickelten neuartigen Resonators sind aber viel kleiner. Er besteht aus kugelförmigen, etwa 40 Nanometer großen Gold-Partikeln, die im Abstand weniger Nanometer Paare bilden - so genannte Dimere - und mit Fluoreszenz-Farbstoffmolekülen verknüpft sind.

Das physikalische Prinzip dahinter: Bereits ein einzelnes Gold-Partikel lässt sich zu Schwingungen seiner Elektronen anregen. Bildet es aber mit einem weiteren Partikel ein Dimer, so treten durch die Kopplung der als "Plasmonen" bezeichneten Elektronen-Schwingungen zwei neuartige Phänomene auf: Zum einen kommt es im Zwischenraum der Partikel zu einer enormen Überhöhung der elektrischen Feldstärke und damit der Fluoreszenz-Intensität des Farbstoffmoleküls. Zum anderen lässt sich die Resonanzfrequenz durch den Abstand der Partikel über einen großen Frequenzbereich hinweg verändern. Damit gleicht das Nanopartikel-Dimer einem Hohlraumresonator, der bei herkömmlichen Lasern zum Einsatz kommt und durch den Abstand der Spiegel reguliert werden kann.

Über die Messung der Fluoreszenzstrahlung gelang den Münchner Wissenschaftlern der Nachweis dieses außergewöhnlichen Resonanzverhaltens der Gold-Dimere für Lichtwellenlängen zwischen 550 und 700 Nanometern, wobei der Partikel-Abstand zwischen 0,8 und 6,4 Nanometern variiert wurde. Eine Modellrechnung zur theoretischen Erklärung ihrer Ergebnisse haben die Forscher gleich mitgeliefert. Dabei ist vor allem die Physik der Farbstoffmoleküle entscheidend. Man muss berücksichtigen, dass die Energieniveaus der Elektronen mit den mechanischen Schwingungen der Moleküle verknüpft sind. Erst dann kann die resonante Verstärkung ganz bestimmter Emissionswellenlängen durch die Nano-Resonatoren korrekt erklärt werden.

Publikation:
"Shaping emission spectra of fluorescent molecules with single, plasmonic nanoresonators", M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. A. Klar, and J. Feldmann, Physical Review Letters (23. Mai 2008)
Ansprechpartner:
Prof. Dr. Jochen Feldmann
Lehrstuhl für Photonik und Optoelektronik
Department für Physik und CeNS
Tel: 089 / 2180 - 3359
E-Mail: feldmann@lmu.de
Dr. Peter Sonntag
Nanosystems Initiative Munich
Tel.: 089 / 2180 - 5091
E-Mail: peter.sonntag@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.nano-initiative-munich.de

Weitere Berichte zu: Nanometer Resonator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rekord-Gammastrahlenblitz aus den Tiefen des Weltraums
20.11.2019 | Julius-Maximilians-Universität Würzburg

nachricht Kosmische Gammastrahlenblitze mit beispielloser Energie
20.11.2019 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics