Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einer der stärksten Laser Deutschlands in Betrieb gegangen

23.05.2008
In nur einem Jahr ist es der Arbeitsgruppe "Laser-Teilchenbeschleunigung" am Forschungszentrum Dresden-Rossendorf (FZD) gelungen, ein neues Hochintensitätslaser-Labor aufzubauen, das am gestrigen Donnerstag (22. Mai 2008) durch die sächsische Wissenschaftsministerin Dr. Eva-Maria Stange in Betrieb genommen wurde.

Der neue Laser kann Lichtpulse mit der enormen Leistung von 150 Terawatt (TW) erzeugen und ist damit einer der leistungsstärksten Ultrakurzpuls-Laser in Deutschland. Für einen winzigen Moment wird im Brennfleck des Laserstrahls eine Lichtintensität erreicht, welche derjenigen entspricht, die die Sonnenstrahlung durch ein Brennglas, das so groß ist wie die gesamte Erde, auf einer Bleistiftspitze bewirken würde.

Europaweit existieren in der Leistungsklasse des neuen Rossendorfer Lasers nur eine Handvoll vergleichbarer Systeme. Trotz der unvorstellbaren Pulsleistungen brauchen solche Laser nur wenig Platz - aufgrund ihrer ultrakurzen Pulse von einigen 10 Femtosekunden (100 Femtosekunden braucht Licht, um die Breite eines menschlichen Haares zu durchqueren) kommen sie bei 10 Pulsen pro Sekunde mit der mittleren Leistung einer Glühbirne aus. Im Puls ist das Licht jedoch so intensiv, dass es beim Auftreffen auf Materie deren Bausteine, die Atome und Elektronen, trennt. Die Gesetze, die normalerweise bei der Wechselwirkung von Licht und Materie gelten, ändern sich dramatisch: Elektronen werden auf mikroskopischen Strecken in Richtung des Laserpulses auf Energien beschleunigt, die sonst nur mit großen Beschleunigeranlagen erreicht werden können.

Das noch sehr junge Gebiet der Laser-Teilchenbeschleunigung hat also verglichen mit der klassischen Beschleunigertechnologie den Vorteil, extrem kompakte Teilchenbeschleuniger bauen zu können. Normalerweise sind die Beschleunigungsstrecken - wie z.B. beim Elektronenbeschleuniger ELBE am FZD - mehrere Meter lang. Bei der Laser-Teilchenbeschleunigung genügen einige Millimeter, um Beschleunigungsspannungen von mehreren 100 Millionen Volt zu erzeugen. Besonders die Medizin setzt große Hoffnungen in die neue Technologie und erwartet kompaktere und folglich preiswertere Anlagen zur Strahlentherapie bei Krebserkrankungen. Zu den weiteren möglichen Anwendungen ultrakurz gepulster Laser zählen z.B. auch moderne Lichtquellen im Röntgenbereich.

Erste Experimente zur Beschleunigung von Teilchen sind am FZD im Sommer dieses Jahres geplant. "In den nächsten Tagen wollen wir den nächsten Meilenstein auf dem Weg dahin erreichen und die Fokussierbarkeit des Laserstrahls auf eine winzige Fläche von einigen Mikrometern Durchmesser demonstrieren", sagt Dr. Ulrich Schramm, Leiter der Arbeitsgruppe Laser-Teilchenbeschleunigung. Dies ist eine Grundvoraussetzung für physikalische Anwendungen, da die Intensität des Laserstrahls umso größer ist, je kleiner die Fläche wird, auf die man ihn richtet. Da jeder Laserpuls nur sehr kurz ist, ähnelt der noch unfokussierte Laserstrahl bei einer Breite von ca. 10 cm mehr einem fliegenden hauchdünnen Blatt Papier.

Die FZD-Wissenschaftler wollen die Grundlagenforschung auf dem Gebiet der Laser-Teilchenbeschleunigung vorantreiben. Der neue Laser steht nur am Anfang der Entwicklung noch leistungsfähigerer Laser am FZD. Die anvisierten langfristigen Anwendungen z.B. im medizinischen Bereich im Auge, haben die Forscher das Ziel, die Beschleunigungsprozesse reproduzierbar zu beherrschen. "Mit unserem Laser befinden wir uns nicht nur in der höchsten Leistungsklasse in diesem Pulsbereich", sagt Dr. Schramm, "sondern verfügen vor allem über die ausgezeichnete Reinheit der Pulse, die nötig ist, um hauchdünne Folien zu beschießen, bevor diese verdampfen". Dazu werden hauchdünne, beispielsweise mit Kunststoff beschichtete Metallfolien verwendet. Um beispielsweise Protonen, also Wasserstoffkerne, zu beschleunigen, fokussieren die Wissenschaftler das Laserlicht auf eine solche Folie. Das Licht drückt Elektronen auf der Rückseite heraus. Da sich unterschiedliche Ladungen anziehen, entsteht so ein senkrechtes Kraftfeld, das die positiv geladenen Protonen beschleunigt.

Der neue Hochintensitäts-Laser befindet sich in der ELBE-Halle im FZD in unmittelbarer Nähe des Elektronenbeschleunigers ELBE. Durch die Kopplung beider Geräte können in einem weiteren Schritt einmalige Experimente zur Laserbeschleunigung von Elektronen durchgeführt werden. Davon versprechen sich die Forscher hochenergetische Elektronenpulse hoher Qualität, wie sie zum Treiben von kompakten und dennoch brillanten Röntgenquellen eingesetzt werden könnten.

Veröffentlichung:
Der Artikel "Heller wird's schneller" (Internetportal "Welt der Physik") von Prof. Roland Sauerbrey und Dr. Ulrich Schramm erklärt kurz und verständlich die Beschleunigung von Teilchen mittels Laser. http://www.weltderphysik.de/de/6057.php
Weitere Informationen:
Dr. Ulrich Schramm
Forschungszentrum Dresden-Rossendorf (FZD)
Arbeitsgruppe Laser-Teilchenbeschleunigung
Tel.: 0351 260 - 2471 / 2693
Email: u.schramm@fzd.de
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Email : c.bohnet@fzd.de
Information:
Das FZD leistet wesentliche Beiträge in der Grundlagen- und anwendungsorientierten Forschung auf folgenden Gebieten:
o Wie verhält sich Materie unter dem Einfluss hoher Felder und in winzigen Dimensionen?
o Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
o Wie schützt man Mensch und Umwelt vor technischen Risiken?
Das FZD engagiert sich für die Umsetzung der wissenschaftlichen Erkenntnisse im Hinblick auf die zukünftige Gestaltung von Wirtschaft und Gesellschaft. Es betreibt zu diesem Zweck 6 größere Forschungsanlagen, die auch externen Nutzern zur Verfügung stehen.

Das FZD ist mit ca. 700 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft http://www.wgl.de und verfügt über ein jährliches Budget von rund 57 Mill. Euro (Stand: 12/2006). Hinzu kommen etwa 10 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 83 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Ländern gemeinsam gefördert werden. Die Leibniz-Institute verfügen über ein Gesamtbudget von gut 1 Milliarde Euro und beschäftigen mehr als 13.000 Mitarbeiter.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.weltderphysik.de/de/6057.php
http://www.wgl.de
http://www.fzd.de/

Weitere Berichte zu: FZD Laser Laser-Teilchenbeschleunigung Laserstrahl

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rekord-Gammastrahlenblitz aus den Tiefen des Weltraums
20.11.2019 | Julius-Maximilians-Universität Würzburg

nachricht Kosmische Gammastrahlenblitze mit beispielloser Energie
20.11.2019 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics