Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kann man Elektronen "festnageln"?

19.05.2008
Experimente Frankfurter Physiker beenden einen Jahrzehnte währenden Disput mit einer Antwort, die alle zufrieden stellt

Wenn Atome sich zu Molekülen verbinden, teilen sie sich ihre äußeren Elektronen. Diese bilden eine negative Ladungswolke, in der die Elektronen zwischen beiden positiv geladenen Kernen hin und her flitzen, so dass man nicht mehr sagen kann, zu welchem Kern sie gehören.

Sie sind delokalisiert. Aber gilt das auch für die näher am Kern liegenden Elektronen? Sind sie auch im Molekül verschmiert oder gehören sie weiterhin zu einem der Atomkerne, sind also lokalisierbar? Diese seit über 50 Jahren umstrittene Frage, die schon fast einem Glaubenskrieg in der Wissenschaftsgemeinde glich, ist jetzt von einem internationalen Forscherteam unter Leitung Frankfurter Atomphysiker gelöst worden.

Die Antwort ist versöhnlich: Wie so oft in der Quantentheorie ist ein "sowohl als auch" richtig.

... mehr zu:
»Elektron »Molekül

Zur Beantwortung dieser Frage wurde Stickstoffmolekülen (N2) das innerste, nahe am Kern gelegene Elektron entfernt. Dies geschah mit hochenergetischem Licht aus der Synchrotronstrahlungsquelle an der Advanced Light Source des Lawrence Berkeley National Laboratory in Berkeley, Kalifornien. Bei diesen Photo-Elektronen liegt die Vermutung nahe, dass sie einem bestimmten Kern zugeordnet und damit lokalisiert werden können. Sie hinterlassen ein Loch in der inneren Kernschale, welches von einem äußeren Elektron aufgefüllt wird.

Unter anderem wird dabei ein zweites Elektron (Auger-Elektron) mit hoher Geschwindigkeit aus dem Molekül katapultiert. Das Auger-Elektron ist quasi eine Sonde, die nachmisst, wo das anfängliche Loch entstand. Beide Elektronen - das Photo- und das Augerelektron - bilden einen verschränkten Zustand, was bedeutet, dass sobald man das eine gemessen hat, man direkt sagen kann, was mit dem zweiten passiert. Diese von Einstein als "spukhafte Fernwirkung" abgelehnte Vorhersage der Quantentheorie hat man inzwischen mit Zwillingsphotonen nachweisen können.

Der Gruppe um Prof. Reinhard Dörner ist es nun mithilfe der in Frankfurt entwickelten COLTRIMS-Technologie erstmals gelungen, solche verschränkten Zustände auch bei Elektronen nachzuweisen. Ihre Apparatur macht die Wege beider entstehenden Teilchen sichtbar. Wie die Physiker in der aktuellen Ausgabe der angesehen Zeitschrift "Science" berichten, lässt sich die Frage, ob Elektronen lokalisiert sind oder nicht, nur für das gesamte System beantworten. Ist das innerste Elektron lokalisiert, so lässt sich auch das zweite Elektron einem der beiden Atomkerne im Molekül zuordnen. Es gibt aber auch Fälle, in denen man nicht weiß, ob das erste Elektron vom linken oder rechten Atom stammt. Dann ist auch das zweite Elektron delokalisiert.

Mit den Details, die hinter diesen Experimenten stecken, lassen sich die Beobachtungen der vergangenen 50 Jahre mit einem einheitlichen Modell erklären und verstehen, sodass beide Fraktionen - die des lokalisierten und delokalisierten Bildes - wieder versöhnt werden können. Für Dr. Markus Schöffler, der für die Messungen verantwortlich war, ergeben sich daraus spannende Perspektiven: Er wird an den Fragestellungen, die sich aus seiner Arbeit ergeben, künftig im Rahmen eines Stipendiums der Alexander von Humboldt-Stiftung in Berkeley weiterforschen.

Informationen:
Prof. Reinhard Dörner, Tel: (069) 798-47003, doerner@atom.uni-frankfurt.de,
Dr. Markus Schöffler, Tel.: (069) 798-47004, schoeffler@atom.uni-frankfurt.de, Institut für Kernphysik, Campus Riedberg.

Stephan M. Hübner | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Berichte zu: Elektron Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Münchner Lichtquanten-Destillerie
24.04.2019 | Max-Planck-Institut für Quantenoptik

nachricht Quantenmaterie fest und supraflüssig zugleich
23.04.2019 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer LED-Leuchtstoff spart Energie

Das menschliche Auge ist für Grün besonders empfindlich, für Blau und Rot hingegen weniger. Chemiker um Hubert Huppertz von der Universität Innsbruck haben nun einen neuen roten Leuchtstoff entwickelt, dessen Licht vom Auge gut wahrgenommen wird. Damit lässt sich die Lichtausbeute von weißen LEDs um rund ein Sechstel steigern, was die Energieeffizienz von Beleuchtungssystemen deutlich verbessern kann.

Leuchtdioden oder LEDs können nur Licht einer bestimmten Farbe erzeugen. Mit unterschiedlichen Verfahren zur Farbmischung lässt sich aber auch weißes Licht...

Im Focus: Münchner Lichtquanten-Destillerie

Garchinger Physiker entwickeln eine Technik, um reine einzelne Photonen zu extrahieren

Das Destillieren von Spirituosen steigert den Gehalt von Alkohol relativ zum Wasseranteil. Ähnlich wirkt eine Methode auf Lichtquanten, Photonen, die ein Team...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantenmaterie fest und supraflüssig zugleich

Forscher um Francesca Ferlaino an der Universität Innsbruck und an der Österreichischen Akademie der Wissenschaften haben in dipolaren Quantengasen aus Erbium- und Dysprosiumatomen suprasolide Zustände beobachtet. Im Dysprosiumgas ist dieser exotische Materiezustand außerordentlich langlebig, was die Tür für eingehendere Untersuchungen weit aufstößt.

Suprasolidität ist ein paradoxer Zustand, in dem die Materie sowohl supraflüssige als auch kristalline Eigenschaften besitzt. Die Teilchen sind wie in einem...

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Lernen von der Natur

17.04.2019 | Veranstaltungen

Mobilität im Umbruch – Conference on Future Automotive Technology, 7.-8. Mai 2019, Fürstenfeldbruck

17.04.2019 | Veranstaltungen

Augmented Reality und Softwareentwicklung: 33. Industrie-Tag InformationsTechnologie (IT)²

17.04.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer LED-Leuchtstoff spart Energie

24.04.2019 | Energie und Elektrotechnik

Control 2019: Fraunhofer IPT stellt High-Speed-Mikroskop mit intuitiver Gestensteuerung vor

24.04.2019 | Messenachrichten

Warum der moderne Mensch aus Afrika kommt

24.04.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics