Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vermisstes Stück des kosmologischen Puzzles gefunden

07.05.2008
Astronomen entdecken einen Teil lange gesuchter baryonischer Materie in einem Filament zwischen zwei Galaxienhaufen

Die Zusammensetzung des Universums bereitet den Astrophysikern großes Kopfzerbrechen: Weit über 90 Prozent bestehen aus bisher unerforschten Stoffen – drei Viertel aus der geheimnisvollen Dunklen Energie, die das All auseinandertreibt, und etwa 21 Prozent aus Dunkler Materie, deren Bestandteile die Physiker bisher nicht ergründen konnten.


Bild: ESA/XMM-Newton/EPIC/ESO/SRON/MPE9
Eine Brücke aus heißem Gas verbindet zwei Galaxienhaufen. Kombination aus Röntgenbild und
optischem Bild von Abell 222 und Abell 223.

Ganze vier Prozent des Universums setzen sich aus der uns vertrauten Form der Materie zusammen, aus der auch wir selbst bestehen, der sogenannten baryonischen Materie. Selbst dieser geringe Anteil gibt allerdings Rätsel auf: Die bekannten Sterne, Galaxien und Gase im All machen zusammen nur die Hälfte dieser vier Prozent aus. Jetzt hat ein Team von Astrophysikern des Max-Planck-Instituts für extraterrestrische Physik (MPE) und der ESO in Garching bei München sowie zweier Institute in den Niederlanden Hinweise auf einen Teil der vermissten Baryonen in einem brückenartigen Filament zwischen zwei Galaxienhaufen gefunden (Astronomy & Astrophysics Letters, Mai 2008).

Das Universum ist wie ein überdimensionales Spinnennetz aufgebaut: Der Hauptteil der sichtbaren Materie ist entlang der faserartigen Strukturen der Dunklen Materie angeordnet. An seinen Fäden und Knoten hält dieses Gewebe riesige Brocken baryonischer Materie fest, die sich aus Quarks und Leptonen zusammensetzen.

... mehr zu:
»Astronom »Galaxienhaufen

Studien über den Urknall und die Fluktuationen der kosmischen Hintergrundstrahlung ergeben recht genaue Zahlen über das Vorhandensein von Baryonen im All. Aus den Berechnungen wussten die Astronomen also seit langem, dass sich die verschollenen Teile des kosmologischen Puzzles irgendwo verstecken müssen. Diese einzige direkt beobachtbare Komponente im All aufzuspüren und zu verstehen ist die Voraussetzung, um mehr über das Netz Dunkler Materie erfahren und die Qualität verschiedener kosmologischer Modelle überprüfen zu können.

Der fehlende Anteil der baryonischen Materie wird von den Forschern seit etwa neun Jahren in Form heißer, ultradünner Gasschleier besonders niedriger Dichte zwischen größeren Strukturen vermutet.

Wegen seiner hohen Temperatur ging man davon aus, dass dieses Gas vor allem im fernen Ultraviolett- und im Röntgenbereich strahlt. Die Wissenschaftler um Norbert Werner vom SRON Netherlands Institute for Space Research haben deshalb das Röntgen-Weltraumobservatorium XMMNewton benützt, um die beiden Galaxienhaufen Abell 222 und Abell 223 zu beobachten, die durch eine schmale Struktur miteinander verbunden sind. Die Wahl fiel auf dieses System wegen seiner besonders günstigen Geometrie: Man sieht die Materiebrücke schräg von vorn fast entlang der Sichtlinie. Dadurch verstärkt sich ihre sehr geringe Flächenhelligkeit durch die Projektion.

Das heiße, im Röntgenlicht sichtbare Gas, das die Wissenschaftler dort fanden, ist Teil der bisher vermissten baryonischen Materie. Die Eigenschaften des Gases, etwa Dichte und Temperatur, entsprechen im Wesentlichen dem, was Simulationen vorhergesagt hatten. „Gerade diesen wärmsten Teil der fehlenden Baryonen zu entdecken war wichtig, weil alle existierenden Modelle zwar die verschwundene Materie in irgendeiner Form heißen Gases vermuten, sich aber über die Extreme bisher nicht klar werden konnten“, erklärt Alexis Finoguenov, Astrophysiker am MPE. Es ist das erste Mal, dass Wissenschaftler die Brücke aus Gas zwischen zwei Galaxienhaufen im Röntgenlicht sehen können. „Bisher konnten wir nur die Cluster sehen, sozusagen die dichten Knoten des Netzes. Nun können wir erstmals auch die Verbindungsfäden des kosmischen Spinnennetzes studieren“, so MPE-Wissenschaftlerin Aurora Simionescu, Ko-Autorin der Publikation.

Die Entdeckung des Gases ist ein wichtiger Schritt auf dem Weg zu einem vollständigen Verständnis der Entwicklung des Kosmos. Die Verteilung und Zusammensetzung der baryonischen Materie gibt Aufschluss darüber, was genau nach dem Urknall ablief und welche Kräfte das Weltall heute und in Zukunft dominieren. Die Astronomen wollen nun in weiteren Weltraummissionen vergleichbare galaktische Systeme aufspüren. Langfristig wird es dazu notwendig sein, ein speziell für diesen Zweck optimiertes Weltraumobservatorium zu bauen, das den Kosmos mit weitaus höherer Empfindlichkeit durchsucht als die heutigen Satelliten.

Weitere Informationen erhalten Sie von:

Dr. Mona Clerico
Pressesprecherin
Max-Planck-Institut für Astrophysik und
Max-Planck-Institut für extraterrestrische Physik
Tel.: +49 89 30000-3980
E-Mail: clerico@mpe.mpg.de
Dr. Alexis Finoguenov
Max-Planck-Institut für extraterrestrische Physik
Tel. +49 89 30000-3644
E-Mail: alexis@mpe.mpg.de

Dr. Mona Clerico | Max-Planck-Institut
Weitere Informationen:
http://www.mpe.mpg.de

Weitere Berichte zu: Astronom Galaxienhaufen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics