Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Pico-Satellit COMPASS-1 der FH Aachen ist erfolgreich im Orbit angekommen

29.04.2008
FH Aachen im All!

Vier Jahre intensive Arbeit der Studierenden am Fachbereich Luft- und Raumfahrttechnik der FH Aachen haben sich gelohnt: COMPASS-1, der erste komplett von Studierenden konstruierte Pico-Satellit Deutschlands, ist pünktlich um 5:53 Uhr Aachener Ortszeit in den Weltraum gestartet.

Dann hieß es warten, bis um 12:13 Uhr beim zweiten Überflug über Europa der erlösende erste Kontakt zur Bodenstation auf der FH-Gebäude Hohenstaufenallee hergestellt werden konnte: Der Satellit funktioniert einwandfrei und konnte bereits eine erste Meldung über seinen Temperaturstatus übermitteln! Bei seiner primären Bestimmung, dem Betrieb im Orbit, hat COMPASS-1 noch einmal gezeigt, wie gut die Arbeit der Studierenden war, die den 1000 cm3 kleinen und nur etwa 1 kg schweren Pico-Satelliten entwickelt und gebaut haben.

Zunächst hatte der Pico-Satellit das Team aus Studierenden und Professoren, das sich zu früher Stunde in den Räumen des FH-Gebäudes Hohenstaufenallee versammelt hatten, um den Start "Ihres" Satelliten zu erleben, auf eine harte Geduldsprobe gestellt: Als COMPASS-1 - auf einer Leinwand live verfolgt von den angespannten Blicken der Studierenden, Professoren und wissenschaftlichen Mitarbeitern - pünktlich im Innern der Trägerrakete um 5:53 vom Sriharikota Space Center/Indien abhob, war die Welt noch in Ordnung.

... mehr zu:
»Pico-Satellit »Satellit

Gemeinsam mit neun weiteren Groß- und Kleinsatelliten trug ihn die Rakete in Richtung Orbit. 13 Minuten benötigte die Trägerrakete, bis sie in 636 km Höhe den ersten der zehn Satelliten absetzen konnte. Kurz darauf folgte die Bestätigung, dass auch der zweite indische Satellit erfolgreich in den Orbit entlassen wurde. Nun sollten die acht Pico-Satelliten in einem Abstand von jeweils 20 Sekunden folgen - doch die Bestätigung, dass der erste CubeSat erfolgreiche ausgestoßen wurde, blieb aus.

Das kanadische Team, dessen Satellit ebenfalls an Bord der Trägerrakete war und das ständig den Status der Mission per Chat an die Aachener Studierenden weitergab, war ratlos. Und auch unter den FH Aachen-Studierenden steigerte sich langsam die Sorge, dass COMPASS-1 die Rakete nicht verlassen haben könnte. Als dann um 6:44 Uhr die Meldung in Aachen einging, dass die Ausstoßsequenz anscheinend nicht ordentlich verlaufen sei, war die Spannung unter den Studierenden fast greifbar.

Um 6:57 Uhr endlich, rund eine Stunde nach dem Start, erreichte sie die erste erlösende Nachricht: Eine kalifornische Bodenstation konnte erfolgreich das Signal eines der Cube-Satelliten empfangen. Doch noch stand nicht fest, ob es sich dabei um COMPASS-1 handelte oder um einen japanischen CubeSat, der auf gleicher Frequenz seine Signale zur Erde sandte. Ein paar Minuten später gab das von den Kaliforniern zur Verfügung gestellte Audio-Morsesignal dann endlich Sicherheit: COMPASS-1 funktioniert und hat erfolgreich seine endgültige sonnensynchrone Umlaufbahn in 635 km Höhe erreicht.

Durch die etwas verspätete Information zum Aussetzen des Satelliten schickte er dann beim zweiten Überflug über Europa um 12:13 Uhr ein erstes Lebenszeichen direkt zur Bodenstation auf dem Gebäude Hohenstaufenallee 6.

In den kommenden sechs Monaten werden die Studierenden von der Bodenstation im Fachbereich Luft- und Raumfahrttechnik aus sechs Mal täglich Verbindung zu ihrem Pico aufnehmen können. Der Kontakt dauert jeweils höchstens 14 Minuten, dann ist der Satellit wieder aus dem Blickfeld verschwunden. In dieser kurzen Zeitperiode wird COMPASS-1 nicht nur Daten zu seinem Gesundheitszustand - beispielsweise zu seiner Solarzellen- und Batteriespannung oder zu seiner momentanen Temperatur - an die Bodenstation senden, sondern gleichzeitig über eine spezielle Datenfrequenz ausführliche Informationen zum Verhalten der eingesetzten neuen Technologien, mit denen der Satellit bestückt ist, empfangen.

Denn COMPASS-1 dient als Testfeld für verschiedene neue Technikkomponenten, deren Haltbarkeit und Leistungsfähigkeit im Orbit untersucht werden sollen. Am Fachbereich Luft- und Raumfahrttechnik werden die Daten dann mit Unterstützung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) ausgewertet und im Internet veröffentlicht. Da die Daten in einem standardisierten Format auf Amateurfunkfrequenzen übertragen werden, kann jeder "mithören".

COMPASS-1 ist beispielsweise mit einer Miniaturkamera ausgestattet, die Aufnahmen von Landflächen mit der Größe von 416 km x 380 km macht. Die Auflösung ist so gut, dass Wolkenformationen, Küstenlinien und Gebirgsketten identifizierbar werden. Neben der Kamera sind weitere innovative Technologien mit an Bord des kleinen Satelliten. So testen die Entwickler hocheffiziente Triple-Junction-Solarzellen, die einen sehr hohen Wirkungsgrad aufweisen und so die geringe verfügbare Fläche des Satellitenkubus optimal zur Energieumwandlung ausnutzen. Außerdem ist ein GPS-Empfänger im Inneren des Kubus, dessen Software vom DLR für die Satellitenanwendung modifiziert wurde.

Damit stehen für das Lageregelungssystem noch präzisere und schneller verfügbare Daten mit den relevanten Positionsinformationen zur Verfügung. Darüber hinaus wurde ein neuartiger extern entwickelter Funk-Transceiver integriert, der den Informationsaustausch zwischen Satellit und Bodenstation mit einer hohen Datenrate ermöglicht.

Wenn alles gut geht, wird COMPASS-1 bis zu einem halben Jahr (und vielleicht auch länger) regelmäßig seine Daten bei der Bodenstation abliefern, bevor seine elektronischen Bauteile durch die energiereiche Strahlung der Sonne nach und nach beschädigt werden und schließlich ausfallen. Nach ein paar Jahren wird der Pico-Satellit dann in die Erdatmosphäre eintauchen und darin verglühen.

Doch bis dahin wird es vielleicht schon einen Nachfolger an der FH Aachen geben: Der COMPASS-2 ist bereits in Planung.

Dr. Roger Uhle | idw
Weitere Informationen:
http://www.fh-aachen.de
http://www.raumfahrt.fh-aachen.de

Weitere Berichte zu: Pico-Satellit Satellit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kernoberfläche beeinflusst Neutronenbindung
17.05.2019 | Technische Universität Darmstadt

nachricht Von 0 auf 1 in einer billionstel Sekunde
16.05.2019 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quanten-Cloud-Computing mit Selbstcheck

Mit einem Quanten-Coprozessor in der Cloud stoßen Innsbrucker Physiker die Tür zur Simulation von bisher kaum lösbaren Fragestellungen in der Chemie, Materialforschung oder Hochenergiephysik weit auf. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie Phänomene der Teilchenphysik auf 20 Quantenbits simuliert haben und wie der Quantensimulator das Ergebnis erstmals selbständig überprüft hat.

Aktuell beschäftigen sich viele Wissenschaftler mit der Frage, wie die „Quantenüberlegenheit“ auf heute schon verfügbarer Hardware genutzt werden kann.

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

MS Wissenschaft startet Deutschlandtour mit Fraunhofer-KI an Bord

17.05.2019 | Veranstaltungen

Wie sicher ist autonomes Fahren?

16.05.2019 | Veranstaltungen

Chemie – das gemeinsame Element

16.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Integrierte Zuckermoleküle schonen Zellkulturen

17.05.2019 | Biowissenschaften Chemie

Erstmals Einsatz von gefäßschützendem Antikörper bei kardiogenem Schock

17.05.2019 | Biowissenschaften Chemie

Additive Maschinen lernen Superlegierungen kennen

17.05.2019 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics