Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weniger ist mehr – Ein neuer Weg zu superschweren Elementen

09.04.2008
Die Alchemisten des Mittelalters scheiterten allesamt damit, Blei in Gold zu verwandeln. In der modernen Wissenschaft dagegen ist seit vielen Jahren ein internationaler Wettlauf um die Herstellung des Elements mit der höchsten Ordnungszahl im Gange.

Die Herstellung superschwerer Elemente ist ein spannendes Forschungsfeld: Alle Elemente dieser Reihe sind sehr instabil und extrem schwierig herzustellen. Radiochemiker der Technischen Universität München haben nun im Rahmen einer internationalen Kooperation einen neuen Weg gefunden, auf dem das Element Hassium entsteht. Die neue Methode ist wesentlich sanfter und eröffnet damit die Möglichkeit, noch schwerere Elemente herzustellen.

Elemente schwerer als Blei sind instabil und wandeln sich durch radioaktiven Zerfall in leichtere Atome um. Das schwerste Element, das noch in nennenswerten Mengen in der Natur vorkommt, ist das Uran. Danach werden die Kerne so instabil, dass sie nur noch künstlich erzeugt werden können und oft nur wenige Sekundenbruchteile existieren. Doch jenseits des Elements mit der Ordnungszahl 113 vermuten die Theoretiker wieder stabilere Atome. Vielleicht warten hier interessante neue Werkstoffeigenschaften auf ihre Endeckung; zumindest aber liefert die Forschung an diesen Elementen wichtige Erkenntnisse über den Aufbau der Materie.

Um solche superschweren Elemente zu erzeugen entreißen die Wissenschaftler leichteren Atomen ihre Elektronen und schießen die Atomkerne mit einem Teilchenbeschleuniger auf eine dünne Folie aus schweren Atomen. Doch nur ganz wenige dieser Teilchen stoßen frontal mit einem Zielkern zusammen und könnten eine Fusion eingehen. Doch um mit dem Zielkern zu verschmelzen, müssen sie erst noch die Abstoßungskräfte der gleich geladenen Kerne überwinden. Hierfür ist sehr viel Energie nötig. „Das ist so, als würde man eine Kugel mit viel Schwung einen hohen Berg hinauf schießen, so dass sie genau auf der Spitze liegen bleibt,“ erklärt Prof. Dr. Andreas Türler, Direktor des Instituts für Radiochemie der Technischen Universität München.

... mehr zu:
»Atom »Neutron »TUM

Aufgrund der hohen Energie der einschlagenden kleinen Kerne sind die neu entstehenden Verbundkerne „heiß.“ Sie sind hoch angeregt, und die meisten zerfallen sofort. Nur in ganz wenigen Fällen überlebt ein Kern nach dem Verdampfen von vier oder fünf Neutronen. Schießt man in etwa gleich schwere Atome aufeinander, so entstehen „kältere“ Verbundkerne mit deutlich höherer Überlebenswahrscheinlichkeit. Doch die Verschmelzung ist durch die enormen Abstoßungskräfte der geladenen Kerne sehr stark behindert. Die Ausbeute der Wissenschaftler sind daher oft nur ein paar Atome pro Tag oder sogar pro Woche.

Radiochemiker der TU München haben nun bei Experimenten am Schwerionen-Beschleuniger der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt in Zusammenarbeit mit der dortigen Kernchemie-Gruppe sowie weiteren nationalen und internationalen Partnern die Vorteile der beiden Methoden kombiniert: Für die Fusionsexperimente wählten sie das relativ leichte Projektil Magnesium (26Mg). Die Forscher benutzten außerdem eine niedrige Strahlenergie, um relativ kalte Verbundkerne zu produzieren. Den bisherigen Theorien zufolge reicht diese Energie gar nicht aus, um die Abstoßungskräfte der Kerne zu überwinden und eine Fusion herbei zu führen. Die Wissenschaftler konnten nun zeigen, dass ihnen hier eine Besonderheit schwerer Kerne zur Hilfe kommt: Diese sind nicht gleichförmig rund sondern können deformiert sein. Die Stärke der Abstoßung ist dann deutlich niedriger als von der Theorie vorher gesagt. Sie hängt viel mehr von der Orientierung der kollidierenden Kerne ab.

Mit der von ihnen entwickelten, hoch effizienten kernchemischen Separationsmethode konnten die TU-Wissenschaftler nachweisen, dass neue superschwere Verbundkerne auch bei Bestrahlungsenergien deutlich unterhalb der klassischen Fusionsbarriere gebildet werden. Bei Bestrahlungen von Curium (248Cm) mit Magnesium-Kernen (26Mg) bildete sich nach der Verdampfung von nur drei Neutronen das neue superschwere Element Hassium (271Hs). Die gemessene Bildungswahrscheinlichkeit war überraschend hoch, vergleichbar zu derjenigen von 270Hs und 269Hs, welche derzeit bei höheren Strahlenergien produziert werden. Die Wissenschaftler um Andreas Türler wollen nun den gefunden Reaktionsweg mit weiteren Kombinationen von Atomen testen. Ihr Fernziel ist die Synthese der ganz schweren Elemente jenseits von Hassium.

Originalpublikation: Physical Review Letters, 100, 132503 (2008)

Ansprechpartner:
Prof. Dr. Andreas Türler
Institut für Radiochemie
Technische Universität München
Walther-Meissner-Str. 3
D-85747 Garching
Tel. +49 89 289 12202
Fax: +49 89 289 12204
E-mail: Andreas.Tuerler@radiochemie.de
Die Technische Universität München (TUM) ist mit rund 420 Professorinnen und Professoren, 6.500 Mitarbeiterinnen und Mitarbeitern (einschließlich Klinikum rechts der Isar) und 22.000 Studierenden eine der führenden Universitäten Deutschlands. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.

Dr. Andreas Battenberg | TU München
Weitere Informationen:
http://www.tum.de
http://www.radiochemie.de

Weitere Berichte zu: Atom Neutron TUM

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Mit Gravitationswellen die Dunkle Materie ausleuchten
22.10.2018 | Universität Zürich

nachricht Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
19.10.2018 | Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Gravitationswellen die Dunkle Materie ausleuchten

Schwarze Löcher stossen zusammen, Gravitationswellen breiten sich durch die Raumzeit aus - und ein riesiges Messgerät ermöglicht es, die Struktur des Universums zu erkunden. Dies könnte bald Realität werden, wenn die Raumantenne LISA ihren Betrieb aufnimmt. UZH-Forschende zeigen nun, dass LISA auch Aufschluss über die schwer fassbaren Partikel der Dunklen Materie geben könnte.

Dank der Laserinterferometer-Raumantenne (LISA) können Astrophysiker Gravitationswellen beobachten, die von Schwarzen Löchern ausgesendet werden. Diese...

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Lehren und Lernen mit digitalen Medien im Fokus

22.10.2018 | Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemie aus der Luft: atmosphärischem Stickstoff als Alternative

22.10.2018 | Biowissenschaften Chemie

Gebirge bereiten Boden für Artenreichtum

22.10.2018 | Geowissenschaften

Neuer Wirkstoff gegen Anthrax

22.10.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics