Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verwandter einer Aminosäure im All entdeckt

26.03.2008
Max-Planck-Wissenschaftler finden Aminoacetonitril nahe dem galaktischen Zentrum

Mit einer 30-Meter-Antenne in der spanischen Sierra Nevada und zwei Radioteleskop-Netzwerken in Frankreich und Australien haben Forscher des Bonner Max-Planck-Instituts für Radioastronomie erstmals den nahen Verwandten einer Aminosäure aufgespürt: Aminoacetonitril. Das organische Molekül fand sich in der "Heimat der großen Moleküle", einer gigantischen Gaswolke nahe des galaktischen Zentrums im Sternbild Schütze (Astronomy & Astrophysics, im Druck).


Struktur des Aminoacetonitril (NH2CH2CN). Bild: Sven Thorwirth, MPIfR


Radioteleskope, mit denen die Entdeckung von Aminoacetonitril im Weltraum möglich wurde: das IRAM 30-Meter-Teleskop in Spanien ( links), das IRAM Plateau-de-Bure-Interferometer in Frankreich ( Mitte) sowie das Australia Telescope Compact Array ( rechts). Bild: IRAM, ATNF

Die "Heimat der großen Moleküle" erscheint als sehr dichter, heißer Gasklumpen innerhalb des Sternentstehungsgebiets Sagittarius B2. In diesem Klumpen von gerade einmal 0,3 Lichtjahren Durchmesser, der von einer tief im Innern verborgenen jungen Sonne aufgeheizt wird, fanden sich die meisten der bisher im Weltraum nachgewiesenen organischen Moleküle - darunter so komplexe Verbindungen wie Äthylalkohol, Formaldehyd, Ameisensäure, Essigsäure, Glykolaldehyd und Äthylenglykol.

Fahndung nach Lebensbausteinen

Von 1965 bis heute wurden mehr als 140 verschiedene Moleküle im Weltall identifiziert, sowohl in interstellaren Wolken als auch in ausgedehnten Hüllen um Sterne. Ein Großteil davon ist organisch, das heißt, auf Kohlenstoffbasis aufgebaut. Besonders intensiv fahnden die Forscher nach sogenannten Biomolekülen - und dabei speziell nach Aminosäuren, den unabdingbaren Bausteinen des Lebens. Aminosäuren ließen sich bereits in Meteoriten auf der Erde nachweisen, nicht aber im interstellaren Raum.

Nach der einfachsten Aminosäure Glycin (NH2CH2COOH) wurde in kosmischen Quellen bereits lange, doch bisher vergeblich gesucht. Angesichts dieser Schwierigkeiten konzentrierte sich die Fahndung auf Aminoacetonitril (NH2CH2CN), einen chemischen Verwandten und möglichen direkten Vorläufer von Glycin.

Ein dichter Wald aus Spektrallinien

So nahmen die Wissenschaftler des Bonner Max-Planck-Instituts für Radioastronomie die "Heimat der großen Moleküle", wie die Quelle unter Fachleuten genannt wird, ins Visier und durchforsteten mit dem IRAM 30-Meter-Teleskop in Spanien einen dichten Wald von 3700 Spektrallinien komplexer Moleküle. Atome und Moleküle leuchten nur bei ganz speziellen Frequenzen, die als charakteristische Linien im Spektrum der Gesamtstrahlung auftreten.

Durch die Analyse solcher Spektrallinien lässt sich aus der Radiostrahlung einer kosmischen Wolke auf deren chemische Zusammensetzung schließen. Je komplexer ein Molekül, desto mehr Möglichkeiten hat es, seine interne Energie abzustrahlen. Deshalb emittieren komplexe Moleküle sehr viele Spektrallinien, die allerdings alle recht schwach sind und sich daher im "Linien-Dschungel" schwer identifizieren lassen.

Kontrolle mit zwei Netzwerken
"Trotzdem gelang es uns schließlich, 51 sehr schwache Linien eindeutig dem Molekül Aminoacetonitril zuzuordnen", sagt Arnaud Belloche, Max-Planck-Wissenschaftler und Erstautor der Publikation in Astronomy & Astrophysics. Bestätigt wurde das Ergebnis bei zehnfach höherer räumlicher Auflösung durch Beobachtungen mit zwei Radioteleskop-Netzwerken: dem Plateau-de-Bure Interferometer in Frankreich sowie dem Australia Telescope Compact Array. Mit diesen Messungen zeigten die Forscher, dass alle registrierten Linien tatsächlich vom selben Ort innerhalb der "Heimat der großen Moleküle" stammen. Belloche sieht das als "zwingenden Beweis für die Glaubwürdigkeit unserer Identifikation".

"Die Entdeckung von Aminoacetonitril hat unser Verständnis der chemischen Vorgänge in dichten, heißen Sternentstehungsgebieten deutlich erweitert. Ich denke, wir werden in Zukunft viele weitere, noch komplexere organische Moleküle im interstellaren Gas nachweisen können. Mehrere Kandidaten haben wir schon!", sagt Karl Menten, Direktor am Max-Planck-Institut für Radioastronomie und Leiter der Forschungsgruppe "Millimeter- und Submillimeterastronomie"

IRAM, das Institut für Radioastronomie bei Millimeter-Wellenlängen, ist ein deutsch-französisch-spanisches Forschungsinstitut, das ein 30-Meter-Radioteleskop auf dem Pico Veleta in knapp 3000 Meter Höhe in der spanischen Sierra Nevada betreibt, außerdem ein aus sechs Einzelteleskopen bestehendes Radiointerferometer auf dem Plateau de Bure in den französischen Alpen nahe Grenoble. Beide Instrumente kamen bei der Entdeckung von Aminoacetonitril im Weltraum zum Einsatz.

ATCA, das Australia Telescope Compact Array, ist ebenfalls ein Radiointerferometer, bestehend aus sechs Teleskopen, das etwa 25 Kilometer westlich des Ortes Narrabri im australischen Bundesstaat New South Wales zu finden ist. Die Anlage wird von der Australia Telescope National Facility in Sydney betrieben.

Originalveröffentlichung:

Belloche, K. M. Menten, C. Comito, H. S. P. Müller, P. Schilke, J. Ott, S. Thorwirth, C. Hieret
Detection of amino acetonitrile in Sgr B2(N)
Astronomy & Astrophysics (im Druck), [DOI 10.1051/0004-6361: 20079203]

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Aminosäure Molekül Radioastronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wettrennen in Sonnennähe: Ionen sind schneller als Atome
22.03.2019 | Georg-August-Universität Göttingen

nachricht Die Zähmung der Lichtschraube
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zähmung der Lichtschraube

22.03.2019 | Physik Astronomie

Saarbrücker Forscher erleichtern durch Open Source-Software den Durchblick bei Massen-Sensordaten

22.03.2019 | HANNOVER MESSE

Ketten aus Stickstoff direkt erzeugt

22.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics