Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verwandter einer Aminosäure im All entdeckt

26.03.2008
Max-Planck-Wissenschaftler finden Aminoacetonitril nahe dem galaktischen Zentrum

Mit einer 30-Meter-Antenne in der spanischen Sierra Nevada und zwei Radioteleskop-Netzwerken in Frankreich und Australien haben Forscher des Bonner Max-Planck-Instituts für Radioastronomie erstmals den nahen Verwandten einer Aminosäure aufgespürt: Aminoacetonitril. Das organische Molekül fand sich in der "Heimat der großen Moleküle", einer gigantischen Gaswolke nahe des galaktischen Zentrums im Sternbild Schütze (Astronomy & Astrophysics, im Druck).


Struktur des Aminoacetonitril (NH2CH2CN). Bild: Sven Thorwirth, MPIfR


Radioteleskope, mit denen die Entdeckung von Aminoacetonitril im Weltraum möglich wurde: das IRAM 30-Meter-Teleskop in Spanien ( links), das IRAM Plateau-de-Bure-Interferometer in Frankreich ( Mitte) sowie das Australia Telescope Compact Array ( rechts). Bild: IRAM, ATNF

Die "Heimat der großen Moleküle" erscheint als sehr dichter, heißer Gasklumpen innerhalb des Sternentstehungsgebiets Sagittarius B2. In diesem Klumpen von gerade einmal 0,3 Lichtjahren Durchmesser, der von einer tief im Innern verborgenen jungen Sonne aufgeheizt wird, fanden sich die meisten der bisher im Weltraum nachgewiesenen organischen Moleküle - darunter so komplexe Verbindungen wie Äthylalkohol, Formaldehyd, Ameisensäure, Essigsäure, Glykolaldehyd und Äthylenglykol.

Fahndung nach Lebensbausteinen

Von 1965 bis heute wurden mehr als 140 verschiedene Moleküle im Weltall identifiziert, sowohl in interstellaren Wolken als auch in ausgedehnten Hüllen um Sterne. Ein Großteil davon ist organisch, das heißt, auf Kohlenstoffbasis aufgebaut. Besonders intensiv fahnden die Forscher nach sogenannten Biomolekülen - und dabei speziell nach Aminosäuren, den unabdingbaren Bausteinen des Lebens. Aminosäuren ließen sich bereits in Meteoriten auf der Erde nachweisen, nicht aber im interstellaren Raum.

Nach der einfachsten Aminosäure Glycin (NH2CH2COOH) wurde in kosmischen Quellen bereits lange, doch bisher vergeblich gesucht. Angesichts dieser Schwierigkeiten konzentrierte sich die Fahndung auf Aminoacetonitril (NH2CH2CN), einen chemischen Verwandten und möglichen direkten Vorläufer von Glycin.

Ein dichter Wald aus Spektrallinien

So nahmen die Wissenschaftler des Bonner Max-Planck-Instituts für Radioastronomie die "Heimat der großen Moleküle", wie die Quelle unter Fachleuten genannt wird, ins Visier und durchforsteten mit dem IRAM 30-Meter-Teleskop in Spanien einen dichten Wald von 3700 Spektrallinien komplexer Moleküle. Atome und Moleküle leuchten nur bei ganz speziellen Frequenzen, die als charakteristische Linien im Spektrum der Gesamtstrahlung auftreten.

Durch die Analyse solcher Spektrallinien lässt sich aus der Radiostrahlung einer kosmischen Wolke auf deren chemische Zusammensetzung schließen. Je komplexer ein Molekül, desto mehr Möglichkeiten hat es, seine interne Energie abzustrahlen. Deshalb emittieren komplexe Moleküle sehr viele Spektrallinien, die allerdings alle recht schwach sind und sich daher im "Linien-Dschungel" schwer identifizieren lassen.

Kontrolle mit zwei Netzwerken
"Trotzdem gelang es uns schließlich, 51 sehr schwache Linien eindeutig dem Molekül Aminoacetonitril zuzuordnen", sagt Arnaud Belloche, Max-Planck-Wissenschaftler und Erstautor der Publikation in Astronomy & Astrophysics. Bestätigt wurde das Ergebnis bei zehnfach höherer räumlicher Auflösung durch Beobachtungen mit zwei Radioteleskop-Netzwerken: dem Plateau-de-Bure Interferometer in Frankreich sowie dem Australia Telescope Compact Array. Mit diesen Messungen zeigten die Forscher, dass alle registrierten Linien tatsächlich vom selben Ort innerhalb der "Heimat der großen Moleküle" stammen. Belloche sieht das als "zwingenden Beweis für die Glaubwürdigkeit unserer Identifikation".

"Die Entdeckung von Aminoacetonitril hat unser Verständnis der chemischen Vorgänge in dichten, heißen Sternentstehungsgebieten deutlich erweitert. Ich denke, wir werden in Zukunft viele weitere, noch komplexere organische Moleküle im interstellaren Gas nachweisen können. Mehrere Kandidaten haben wir schon!", sagt Karl Menten, Direktor am Max-Planck-Institut für Radioastronomie und Leiter der Forschungsgruppe "Millimeter- und Submillimeterastronomie"

IRAM, das Institut für Radioastronomie bei Millimeter-Wellenlängen, ist ein deutsch-französisch-spanisches Forschungsinstitut, das ein 30-Meter-Radioteleskop auf dem Pico Veleta in knapp 3000 Meter Höhe in der spanischen Sierra Nevada betreibt, außerdem ein aus sechs Einzelteleskopen bestehendes Radiointerferometer auf dem Plateau de Bure in den französischen Alpen nahe Grenoble. Beide Instrumente kamen bei der Entdeckung von Aminoacetonitril im Weltraum zum Einsatz.

ATCA, das Australia Telescope Compact Array, ist ebenfalls ein Radiointerferometer, bestehend aus sechs Teleskopen, das etwa 25 Kilometer westlich des Ortes Narrabri im australischen Bundesstaat New South Wales zu finden ist. Die Anlage wird von der Australia Telescope National Facility in Sydney betrieben.

Originalveröffentlichung:

Belloche, K. M. Menten, C. Comito, H. S. P. Müller, P. Schilke, J. Ott, S. Thorwirth, C. Hieret
Detection of amino acetonitrile in Sgr B2(N)
Astronomy & Astrophysics (im Druck), [DOI 10.1051/0004-6361: 20079203]

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Aminosäure Molekül Radioastronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blauer Phosphor – jetzt erstmals vermessen und kartiert
15.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Materiezustände durch Licht verändern
12.10.2018 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Materiezustände durch Licht verändern

Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Multiresistente Keime aus Abwasser filtern

16.10.2018 | Ökologie Umwelt- Naturschutz

Pilz schlägt sich mit eigenen Waffen

16.10.2018 | Biowissenschaften Chemie

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics