Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Kurzpuls-Laser für die Westentasche

14.03.2008
Halbleiter-Scheibenlaser: MBI- und FBH-Physiker stellen neuen Rekord in der Pulsdauer auf.

Möglichst kurze Pulse, handlich, preisgünstig und mit Strahlung verschiedener Wellenlänge erhältlich - ein Laser mit solchen Eigenschaften steht ganz oben auf dem "Wunschzettel" von Industrie und Forschung. Die Anwendungsmöglichkeiten sind vielfältig und reichen von der Untersuchung der Abläufe bei biochemischen Reaktionen über die Materialbearbeitung bis zur Medizin.

Einen Lasertyp, der bald all diese Kriterien erfüllen könnte, gibt es bereits - den optisch gepumpten Halbleiter-Scheibenlaser. Weltweit arbeiten Physiker daran, diesen Lasertyp zu optimieren, darunter auch Dr. Peter Klopp, Dr. Uwe Griebner und ihre Kollegen vom Max-Born-Institut (MBI) und Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH). Ihr Hauptaugenmerk richtet sich darauf, die Dauer der Laserpulse zu verkürzen. Je kürzer sie sind, desto konzentrierter ist ihre Energie. Damit lässt sich nicht nur Material besser bearbeiten. Für die Forschung bedeuten kürzere Pulse zeitlich genauer aufgelöste Messungen, vergleichbar mit einem Mikroskop, das ein detailreicheres Bild liefert.

Bei 480 Femtosekunden lag bisher der Rekord für die Pulsdauer eines Halbleiter-Scheibenlasers. Eine Femtosekunde ist der billiardste Teil einer Sekunde. Selbst das Licht schafft es in dieser kurzen Zeitspanne nicht, den Durchmesser eines menschlichen Haares zu durchqueren. "Wir haben die Pulsdauer auf 290 Femtosekunden verkürzt", berichtet Peter Klopp, "das ist gleichzeitig die kürzeste Pulsdauer aus Halbleiterlasern überhaupt." Wie dies gelang, das präsentieren er und seine Kollegen auf dem Kongress "Laser Optics Berlin 2008".

... mehr zu:
»Femtosekunde »Laser »Laserpuls

Herzstück des Lasers ist ein nur Stecknadelkopf großes und nicht einmal haardickes Plättchen aus Halbleitermaterial. Darin befinden sich vier extrem dünne Schichten aus Indium-Gallium-Arsenid. In diesen so genannten Quantenwells werden durch Energiezufuhr die für den Laserbetrieb erforderlichen Photonen erzeugt und in Richtung der Oberfläche emittiert. Mit Hilfe eines sättigbaren Absorbers, ebenfalls ein Halbleiterbauelement, werden die Schwingungsmoden im Laserresonator gekoppelt und Laserpulse entstehen.

"Mit Halbleiterlasern wären theoretisch Pulse von weniger als 100 Femtosekunden möglich", weiß Laserexperte Klopp. "Ein Hauptproblem, was dem entgegensteht, ist aber der Chirp." Die verschiedenen Frequenzen, aus denen sich der Laserpuls zusammensetzt, haben unterschiedliche Ausbreitungsgeschwindigkeiten. Dadurch läuft der Puls mit der Zeit auseinander, seine Dauer nimmt zu. Die zeitliche Struktur eines derart veränderten Signals bezeichnen Physiker als Chirp.

Durch eine geringere Dicke des Halbleiter- Plättchens und eine Beschichtung haben die Forscher den Chirp verringert, der aus internen Reflexionen resultiert. Chirp entsteht auch, weil sich bei Durchlauf des Laserpulses durch Halbleiter die Konzentration der freien Ladungsträger und damit der Brechungsindex zeitlich ändert. In der Licht erzeugenden Halbleiterstruktur sinkt die Ladungsträgerdichte, im sättigbaren Absorber nimmt sie zu. Daraus resultiert idealerweise ein spiegelbildlicher, kompensierend wirkender Chirp. "Durch eine in den Zwischenschichten zu den Quantenwells hin sinkende Aluminiumkonzentration erreichen wir, dass die freien Ladungsträger schneller als durch bloße Wärmediffusion in die Quantenwells wandern, was die Ladungsträgerdichte modifiziert", erläutert der Wissenschaftler. Klopp und seine Kollegen waren weltweit die ersten, die eine solche Materialkomposition bei Halbleiter-Scheibenlasern ausprobiert haben.

Bestellt haben die Laser-Konstrukteure die "Spezialanfertigung" gleich nebenan, bei ihren Kollegen vom Ferdinand-Braun-Institut, die auch die Halbleiterabsorber und die Pumplaserdioden liefern. "Diese Zusammenarbeit stellt die Basis unserer Arbeit dar", betont Klopp. Der von den Wissenschaftlern konstruierte Laser erzeugt infrarote Lichtpulse. Durch den Einsatz anderer Halbleitermaterialien sind aber auch andere Wellenlängen bis hin zum ultravioletten Ende des Lichtspektrums realisierbar. Da Halbleiter heute in Massenproduktion gefertigt werden können, sind solche Laser preisgünstig herzustellen. Zudem ist schon der Versuchslaser so klein, dass er in einem Schuhkarton Platz fände. Für eine Serienproduktion könnte er noch kleiner werden, sozusagen ein "Laser für die Westentasche".

Autorin: Bettina Micka

Kontakt:
Dr. Peter Klopp, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Tel.: 030 6392 1442, E-Mail: klopp@mbi-berlin.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.mbi-berlin.de

Weitere Berichte zu: Femtosekunde Laser Laserpuls

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics