Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Kurzpuls-Laser für die Westentasche

14.03.2008
Halbleiter-Scheibenlaser: MBI- und FBH-Physiker stellen neuen Rekord in der Pulsdauer auf.

Möglichst kurze Pulse, handlich, preisgünstig und mit Strahlung verschiedener Wellenlänge erhältlich - ein Laser mit solchen Eigenschaften steht ganz oben auf dem "Wunschzettel" von Industrie und Forschung. Die Anwendungsmöglichkeiten sind vielfältig und reichen von der Untersuchung der Abläufe bei biochemischen Reaktionen über die Materialbearbeitung bis zur Medizin.

Einen Lasertyp, der bald all diese Kriterien erfüllen könnte, gibt es bereits - den optisch gepumpten Halbleiter-Scheibenlaser. Weltweit arbeiten Physiker daran, diesen Lasertyp zu optimieren, darunter auch Dr. Peter Klopp, Dr. Uwe Griebner und ihre Kollegen vom Max-Born-Institut (MBI) und Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH). Ihr Hauptaugenmerk richtet sich darauf, die Dauer der Laserpulse zu verkürzen. Je kürzer sie sind, desto konzentrierter ist ihre Energie. Damit lässt sich nicht nur Material besser bearbeiten. Für die Forschung bedeuten kürzere Pulse zeitlich genauer aufgelöste Messungen, vergleichbar mit einem Mikroskop, das ein detailreicheres Bild liefert.

Bei 480 Femtosekunden lag bisher der Rekord für die Pulsdauer eines Halbleiter-Scheibenlasers. Eine Femtosekunde ist der billiardste Teil einer Sekunde. Selbst das Licht schafft es in dieser kurzen Zeitspanne nicht, den Durchmesser eines menschlichen Haares zu durchqueren. "Wir haben die Pulsdauer auf 290 Femtosekunden verkürzt", berichtet Peter Klopp, "das ist gleichzeitig die kürzeste Pulsdauer aus Halbleiterlasern überhaupt." Wie dies gelang, das präsentieren er und seine Kollegen auf dem Kongress "Laser Optics Berlin 2008".

... mehr zu:
»Femtosekunde »Laser »Laserpuls

Herzstück des Lasers ist ein nur Stecknadelkopf großes und nicht einmal haardickes Plättchen aus Halbleitermaterial. Darin befinden sich vier extrem dünne Schichten aus Indium-Gallium-Arsenid. In diesen so genannten Quantenwells werden durch Energiezufuhr die für den Laserbetrieb erforderlichen Photonen erzeugt und in Richtung der Oberfläche emittiert. Mit Hilfe eines sättigbaren Absorbers, ebenfalls ein Halbleiterbauelement, werden die Schwingungsmoden im Laserresonator gekoppelt und Laserpulse entstehen.

"Mit Halbleiterlasern wären theoretisch Pulse von weniger als 100 Femtosekunden möglich", weiß Laserexperte Klopp. "Ein Hauptproblem, was dem entgegensteht, ist aber der Chirp." Die verschiedenen Frequenzen, aus denen sich der Laserpuls zusammensetzt, haben unterschiedliche Ausbreitungsgeschwindigkeiten. Dadurch läuft der Puls mit der Zeit auseinander, seine Dauer nimmt zu. Die zeitliche Struktur eines derart veränderten Signals bezeichnen Physiker als Chirp.

Durch eine geringere Dicke des Halbleiter- Plättchens und eine Beschichtung haben die Forscher den Chirp verringert, der aus internen Reflexionen resultiert. Chirp entsteht auch, weil sich bei Durchlauf des Laserpulses durch Halbleiter die Konzentration der freien Ladungsträger und damit der Brechungsindex zeitlich ändert. In der Licht erzeugenden Halbleiterstruktur sinkt die Ladungsträgerdichte, im sättigbaren Absorber nimmt sie zu. Daraus resultiert idealerweise ein spiegelbildlicher, kompensierend wirkender Chirp. "Durch eine in den Zwischenschichten zu den Quantenwells hin sinkende Aluminiumkonzentration erreichen wir, dass die freien Ladungsträger schneller als durch bloße Wärmediffusion in die Quantenwells wandern, was die Ladungsträgerdichte modifiziert", erläutert der Wissenschaftler. Klopp und seine Kollegen waren weltweit die ersten, die eine solche Materialkomposition bei Halbleiter-Scheibenlasern ausprobiert haben.

Bestellt haben die Laser-Konstrukteure die "Spezialanfertigung" gleich nebenan, bei ihren Kollegen vom Ferdinand-Braun-Institut, die auch die Halbleiterabsorber und die Pumplaserdioden liefern. "Diese Zusammenarbeit stellt die Basis unserer Arbeit dar", betont Klopp. Der von den Wissenschaftlern konstruierte Laser erzeugt infrarote Lichtpulse. Durch den Einsatz anderer Halbleitermaterialien sind aber auch andere Wellenlängen bis hin zum ultravioletten Ende des Lichtspektrums realisierbar. Da Halbleiter heute in Massenproduktion gefertigt werden können, sind solche Laser preisgünstig herzustellen. Zudem ist schon der Versuchslaser so klein, dass er in einem Schuhkarton Platz fände. Für eine Serienproduktion könnte er noch kleiner werden, sozusagen ein "Laser für die Westentasche".

Autorin: Bettina Micka

Kontakt:
Dr. Peter Klopp, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Tel.: 030 6392 1442, E-Mail: klopp@mbi-berlin.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.mbi-berlin.de

Weitere Berichte zu: Femtosekunde Laser Laserpuls

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schichten aus Braunschweig auf dem Weg zum Merkur
18.10.2018 | Fraunhofer-Institut für Schicht- und Oberflächentechnik IST

nachricht Datenspeicher der Zukunft: Extrem kleine magnetische Nanostrukturen mit Tarnkappen beobachtet
18.10.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nanodiamanten als Photokatalysatoren

18.10.2018 | Materialwissenschaften

Schichten aus Braunschweig auf dem Weg zum Merkur

18.10.2018 | Physik Astronomie

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics