Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine Luftblasen mit großer Wirkung

11.03.2008
Wissenschaftler schlagen einen neuen Mechanismus zur Regulation des Ionenstroms durch Membrankanäle vor

Im "Nachrichtenwesen" eines Organismus spielen Ionenkanäle eine wichtige Rolle: Eingelagert in die Zellmembran bilden diese Proteine winzige Poren, durch die kleine geladene Teilchen wie Kalium- oder Natriumionen vom Zellinneren nach außen gelangen können und umgekehrt. Sie vermitteln auf diese Weise u.a. die elektrische Aktivität von Nerven- und Muskelzellen.


Wenn das Gate offen ist (li.), sind hinreichend Wassermoleküle vorhanden, um die Ionen zu umhüllen, die durch den Kanal diffundieren wollen. Wird das Gate also geschlossen (re.), so werden die Wassermoleküle - aufgrund der Abstoßung durch die Kanalinnenwand - quasi verdrängt; es bildet sich ein Gasbläschen, das für die Ionen wie eine Barriere wirkt. Bild: Max-Planck-Gesellschaft

Der Ausfall von Ionenkanälen kann schwerwiegende gesundheitliche Folgen haben. Deshalb ist ein Verständnis ihrer Struktur und Funktion von so großer Bedeutung. Wissenschaftler vom Max-Planck-Institut für Metallforschung in Stuttgart und ihre Kollegen von der Rush Medical School in Chicago sowie der Miller School of Medicine an der Universität in Miami haben nun erstmals einen physikalischen Mechanismus identifiziert, der für das Öffnen und Schließen von Ionenkanälen verantwortlich sein kann.

Wenn Sie zum Frühstück eine Tasse Tee oder Kaffee trinken und ihre Tasse anheben und zum Mund bewegen, dann verarbeitet ihr Gehirn zum einen Informationen über Temperatur und Gewicht der Tasse, zum anderen über die Position ihrer Hand. Und daraus resultieren entsprechende Befehle an die Muskeln ihres Arms, um die Bewegung der Tasse zum Mund zu koordinieren. Diese Informationen zwischen Hand und Gehirn werden entlang von Nervenbahnen ausgetauscht. Auch wenn Sie diese Bewegung alltäglich ausführen und ihr keine weitere Aufmerksamkeit schenken, so spielen sich doch auf der mikroskopischen Skala eine Menge atemberaubender Dingen ab, um dies zu ermöglichen.

... mehr zu:
»Ion »Ionenkanal »Wassermolekül

Die Information entlang der Nervenbahnen breitet sich in Form eines sogenannten Aktionspotenzials aus. Das Aktionspotenzial stellt eine Veränderung der elektrischen Spannung über der Zellmembran dar, die aus dem Einstrom von Natriumionen in die Zelle und einem darauffolgenden Ausstrom von Kaliumionen aus der Zelle resultiert. Die Zellmembran an sich ist für Ionen undurchlässig. Damit Natrium- und Kaliumionen durch die Zellmembran "schlüpfen" können, stellt die Natur spezielle Proteine, sogenannte Ionenkanäle, zur Verfügung. Diese Kanäle sind mikroskopisch kleine Poren in der Membran, die je nach molekularer Bauweise nur für bestimmte Ionen durchlässig sind, und zum Beispiel Natrium- von Kaliumionen unterscheiden können. Die engste Stelle - hier hat der untersuchte Ionenkanal nur einen Durchmesser von etwa drei Ångström (1 Å = 10-7 mm) - fungiert dabei als Selektivitätsfilter.

Der an den Selektivitätsfilter anschließende Teil der Pore - von den Wissenschaftlern als "Gate" bezeichnet - ist mit einem Durchmesser von 12 Ångström schon deutlich weiter. Als Reaktion auf eine Änderung der Membranspannung können Ionenkanäle den Durchmesser ihres "Gates" vergrößern oder verkleinern. Diese Konformationsänderung reicht aber nicht notwendigerweise aus, um den Ionenstrom zu stoppen. Ein wichtiges Detail dabei ist, dass das "Gate" typischerweise leicht hydrophob, also wasserabweisend ist. Wenn das "Gate" weit genug ist, spielt die Wechselwirkung zwischen Wassermolekülen und dem Protein eine untergeordnete Rolle, weil im Mittel jedes Wassermolekül von mehreren Wassermolekülen umgeben ist.

Wird das Gate aber enger, dann gewinnt die Wechselwirkung zwischen Wassermolekülen und dem Protein an Bedeutung. Wird schließlich ein bestimmter Wert für den Durchmesser des "Gates" unterschritten, dann ist es - aufgrund der abstoßenden Wirkung zwischen Wassermolekülen und Protein - sehr unwahrscheinlich, noch Wasser im "Gate" zu finden. Es bildet sich hier stattdessen ein kleines Gasbläschen, das große Wirkung zeigt: Ionen, die sich am liebsten in Wasser befinden, treffen auf eine schier undurchdringbare Barriere. Damit unterbricht das Gasbläschen den Ionenstrom durch den Kanal und schließt das "Gate". "Tatsächlich können eine Vielzahl von experimentellen Beobachtungen zum Öffnen und Schließen von Ionenkanälen mit diesem Modell des Bubble Gating verstanden werden" erklärt Roland Roth. In der Physik ist dieser Effekt von stark eingeschränkten Flüssigkeiten seit langem bekannt - nun kann er helfen, ein biologisches Phänomen zu verstehen.

Interessanterweise bietet das Bubble Gating-Modell auch eine Möglichkeit, die betäubende Wirkung eines Edelgases wie Xenon zu erklären. Wird Xenon in der richtigen Konzentration in die Atemluft gemischt, dann stellt es ein praktisch perfektes Narkotikum dar. "Da Xenon chemisch sehr träge ist, scheiden Mechanismen, die auf chemisch spezifische Bindungen aufbauen, sehr wahrscheinlich als Erklärung aus", sagt der junge Biophysiker. "Aber Rechnungen im Bubble Gating-Modell haben gezeigt, dass Xenon schon bei geringen Konzentrationen die Wahrscheinlichkeit der Bläschenbildung erhöht, auch wenn das "Gate" noch relative weit ist."

Im Rahmen des vorgestellten Modells können eine Reihe bekannter Phänome zusammengefasst und theoretisch untersucht werden. Damit ermöglicht das Modell nicht nur, die faszinierenden Prozesse an Nervenzellen neu zu beleuchten, die ablaufen, wenn Sie ihre Tee- oder Kaffeetasse zum Mund führen, sondern stellt auch neue Möglichkeiten zur Verfügung, um Narkose- und Arzneimittelwirkungen zu untersuchen.

Originalveröffentlichung:

Roland Roth, Dirk Gillespie, Wolfgang Nonner, Bob Eisenberg
Bubbles, Gating, and Anesthetics in Ion Channels
Biophys. Journal BioFAST, 30. Januar 2008

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Ion Ionenkanal Wassermolekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Mit Gravitationswellen die Dunkle Materie ausleuchten
22.10.2018 | Universität Zürich

nachricht Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
19.10.2018 | Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Gravitationswellen die Dunkle Materie ausleuchten

Schwarze Löcher stossen zusammen, Gravitationswellen breiten sich durch die Raumzeit aus - und ein riesiges Messgerät ermöglicht es, die Struktur des Universums zu erkunden. Dies könnte bald Realität werden, wenn die Raumantenne LISA ihren Betrieb aufnimmt. UZH-Forschende zeigen nun, dass LISA auch Aufschluss über die schwer fassbaren Partikel der Dunklen Materie geben könnte.

Dank der Laserinterferometer-Raumantenne (LISA) können Astrophysiker Gravitationswellen beobachten, die von Schwarzen Löchern ausgesendet werden. Diese...

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Lehren und Lernen mit digitalen Medien im Fokus

22.10.2018 | Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemie aus der Luft: atmosphärischem Stickstoff als Alternative

22.10.2018 | Biowissenschaften Chemie

Gebirge bereiten Boden für Artenreichtum

22.10.2018 | Geowissenschaften

Neuer Wirkstoff gegen Anthrax

22.10.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics