Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RWTH-Wissenschaftler auf dem Weg zum Quantencomputer

11.03.2008
Jülich-Aachener Allianz JARA gibt der Forschung einen enormen Schub

Noch sind sie Vision: Quantencomputer werden eines Tages blitzschnell ein Vielfaches an Daten als heute verarbeiten. Diese neue Computergeneration wird ein anderes, wesentlich effizienteres Arbeitsverhalten als herkömmliche Großrechner oder Personalcomputer an den Tag legen:

Sie nutzen nicht länger klassische Bits wie beispielsweise zwei verschiedene elektronische Spannungszustände zur Datenverarbeitung im Arbeitsspeicher, sondern Quanten-Bits, kurz qubits genannt. Sie sind aus wohl definierten quantenmechanischen Zuständen aufgebaut. Zudem werden die Quantencomputer eine neue Sicherheitsstufe erreichen. Unbefugte zerstören beim Eindringen in den Rechner sofort die Quantenzustände und damit die mit ihnen durchgeführten Rechenoperationen, da sie die individuelle Überlagerung der Quantenzustände nicht kennen.

Derzeit wird in diesem Bereich an unterschiedlichen Konzepten geforscht. An der RWTH Aachen befassen sich Univ.-Prof. Dr. sc. nat. Gernot Güntherodt und sein Team mit Quantenzuständen, die der Überlagerung von so genannten up- und down-Zuständen des quantenmechanischen Spins eines Elektrons dienen. Der Spin kommt durch die Drehung des Elektrons um sich selbst zustande. Einem Kinderkreisel vergleichbar, behält das Elektron seine Spinrichtung im Raum bei, solange es nicht von außen in seiner Bewegung gestört wird. Die Spinelektronik ist das wissenschaftliche Spezialgebiet von Professor Güntherodt, Leiter des RWTH-Lehrstuhls für Experimentalphysik II A. Gemeinsam mit Kollegen und Kolleginnen am Forschungszentrum Jülich und an der Universität Göttingen erforscht er im Rahmen des Virtuellen Instituts für Spinelektronik (VISEL) der Helmholtz-Gemeinschaft die Spinzustände in Halbleitern. Im Mittelpunkt stehen dabei ihre Lebensdauer und ihre potenziellen Anwendungen.

Im dem 2007 gegründeten Forschungsbündnis Jülich-Aachen Research Alliance (JARA) zielen die Arbeiten auf die Grundlagen der spinbasierten Informationstechnologie. Der Vorteil der Quanten-Computer gegenüber der derzeitigen Rechnertechnik leuchtet ein: "Bei den herkömmlichen Rechnern müssen sich die Elektronen mit ihren Ladungen für einen Bit-Wechsel von A nach B bewegen. Künftig genügt es, wenn die Spinzustände der Elektronen in ihrer Orientierung gedreht werden, was Zeit spart. Somit können die Rechenoperationen schneller durchgeführt werden." Die derzeitige Forschung sucht Wege, die kontrollierte Ausrichtung der Spins möglichst so lange zu erhalten, bis alle Rechenoperationen ausgeführt sind.

Bis dieses Konzept eines Quantencoputers realisiert ist, muss die Grundlagenforschung noch Erhebliches leisten. Die hochkarätig zusammengesetzte JARA-Expertise in Aachen und Jülich im Bereich der Informationstechnologie beschäftigt sich daher intensiv mit verschiedenen Aspekten der Spinelektronik. Vor kurzem wurde eine Forschergruppe zum Thema "Kohärenz- und Relaxationseigenschaften von Elektronenspins" mit Partnern aus Aachen, Jülich, Dresden und Braunschweig von der Deutschen Forschungsgemeinschaft bewilligt, die in den nächsten drei Jahren mit bis zu drei Millionen Euro gefördert wird. Ziel ist hierbei, mehr über die Zustände der Elektronen-Spins in variierenden Materialien wie Kohlenstoff-Nanoröhrchen, Graphen, Halbleiterdrähten und Kuprat-Spinketten zu erfahren.

Durch die neue Allianz JARA im Rahmen der Exzellenzinitiative erhält der bewährte Aachen-Jülicher Forschungsschwerpunkt Spintronik zusätzliche Dynamik. "Das Forschungszentrum Jülich und unser RWTH-Institut haben in früheren Jahren vielfältig kooperiert. Durch JARA erhält die Zusammenarbeit aber einen enormen Schub", berichtet Güntherodt. Zwei zusätzliche Juniorprofessuren sind bewilligt, zudem können wissenschaftliche Geräte, Labor- und Büroflächen in Aachen und Jülich je nach Bedarf wechselseitig genutzt werden.

Schon heute wird die Spinelektronik in kleineren, nicht so komplexen Bauelementen genutzt. So haben moderne Festplatten bereits "Spin valve"-Dünnschicht-Leseköpfe, die den Festplatteninhalt auslesen und an den Arbeitsspeicher des Computers weitergeben. "Dabei nutzen sie den Riesenmagnetowiderstand GMR, für den unser Jülicher Kollege Peter Grünberg gemeinsam mit dem Pariser Albert Fert den jüngsten Nobelpreis für Physik erhalten hat", erläutert der RWTH-Wissenschaftler. Der Aufbau des Lesekopfs erinnert an ein Sandwich: Zwei magnetische Schichten sind durch eine dünne, nicht magnetische Schicht getrennt. Die parallele oder antiparallele Ausrichtung der beiden Schichten als Folge der gegensätzlichen ausgerichteten magnetischen Bits auf der Festplatte führt zu kleinen oder großen GMR-Werten. Letztere stellen dann die Bits "0" oder "1" der klassischen Datenspeicherung dar. "Die magnetischen Sandwich-Leseköpfe können aufgrund des Riesen-Magnetwiderstands-Effekts sehr viel kleiner gebaut werden als herkömmliche Leseköpfe. Dadurch wurde die Speicherdichte von Festplatten dramatisch erhöht", betont Güntherodt.

von Ilse Trautwein

Infos: Univ.-Prof. Dr. Gernot Güntherodt, Lehrstuhl für Experimentalphysik II A der RWTH Aachen, 0241/80 27055, Gernot.Guentherodt@pyhsik.rwth-aachen.de

Thomas von Salzen | idw
Weitere Informationen:
http://www.rwth-aachen.de

Weitere Berichte zu: Elektron JARA Quantencomputer Spin Spinelektronik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Robuste Materialien in Schwingung versetzt
07.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Kosmischer Stoßverkehr in der Stern- und Planetenentstehung
07.07.2020 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Im Focus: Robuste Materialien in Schwingung versetzt

Kieler Physikteam beobachtet in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse

In der Physik werden sie zurzeit intensiv erforscht, in der Elektronik könnten sie ganz neue Funktionen ermöglichen: Sogenannte topologische Materialien...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Neues Verständnis der Defektbildung an Silizium-Elektroden

Theoretisch lässt sich das Speichervermögen von handelsüblichen Lithiumionen-Batterien noch vervielfachen – mit einer Elektrode, die auf Silizium anstatt auf Graphit basiert. Doch in der Praxis machen solche Akkus mit Silizium-Anoden nach wenigen Lade-Entlade-Zyklen schlapp. Ein internationales Team um Forscher des Jülicher Instituts für Energie- und Klimaforschung hat jetzt in einzigartiger Detailgenauigkeit beobachtet, wie sich die Defekte in der Anode ausbilden. Dabei entdeckten sie bislang unbekannte strukturelle Inhomogenitäten in der Grenzschicht zwischen Anode und Elektrolyt. Die Erkenntnisse sind in der Fachzeitschrift „Nature Communications“ erschienen.

Silizium-basierte Anoden können in Lithium-Ionen-Akkus prinzipiell neunmal so viel Ladung speichern wie der üblicherweise verwendete Graphit, bei gleichem...

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Guido Bonati ist neuer Chief Technology Officer und Leiter Forschung & Entwicklung bei FISBA AG

08.07.2020 | Unternehmensmeldung

Social Learning in der Firma und virtuelle Seminarräume für Mitarbeiter

07.07.2020 | Seminare Workshops

„Maschinen-EKG“ soll Umwelt schonen

07.07.2020 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics