Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TUM-Physiker entschlüsseln zentrale Wechselwirkung der Biologie

29.02.2008
Eine der wichtigsten Kräfte in der Biologie konnte bisher nicht zufriedenstellend erklärt werden: die hydrophobe (wasserabstoßende) Anziehung.

Der Durchbruch gelang jetzt einem Forscherteam um Dr. Dominik Horinek aus der Arbeitsgruppe von Prof. Roland Netz, Ordinarius für Theoretische Physik an der Technischen Universität München (TUM), in Zusammenarbeit mit Prof. Thorsten Hugel vom Lehrstuhl für Biophysik der TUM. Die Wissenschaftler maßen die hydrophobe Anziehung zwischen einer einzelnen Peptid-Kette und einer Diamant-Oberfläche mit einem Rasterkraftmikroskop (AFM) und verglichen sie mit molekular-dynamischen Simulationsrechnungen.

Die Ergebnisse erlauben weitreichende Schlüsse über den Mechanismus dieser fundamentalen Wechselwirkung. Sie kann nun erstmals auch quantitativ erklärt werden. Die Forschungsarbeit wurde in der aktuellen Ausgabe der amerikanischen Fachzeitschrift "Proceedings oft the National Academy of Sciences" (PNAS) veröffentlicht.

In wässriger Umgebung ziehen sich nicht-polare Moleküle aufgrund der hydrophoben Wechselwirkung an. Diese Kraft ist von zentraler Bedeutung für die Biologie, etwa bei der Proteinfaltung und dem Zusammenhalt von großen Proteinmolekülen, aber auch für viele Phänomene des täglichen Lebens, zum Beispiel bei der Bindung von Fettmolekülen durch Seife oder der Stabilität von Mayonnaise und anderen Emulsionen.

... mehr zu:
»Biologie »Peptid-Kette

Dass der Mechanismus der hydrophoben Wechselwirkung bislang noch nicht zufriedenstellend erklärt werden konnte, liegt an den bislang untersuchten Modellsystemen. Viele Wissenschaftler betrachteten etwa zwei einander auf wenige Nanometer angenäherte schwach gekrümmte hydrophobe Oberflächen. Die Messungen mit diesem sogenannten "Surface-Force Apparatus" werden aber durch die Bildung von Luftblasen zwischen den Oberflächen gestört, so dass die eigentliche hydrophobe Kraft nicht bestimmt werden kann. Auch für Simulations-Studien ist diese Geometrie ungeeignet, da das Wasser zwischen den Oberflächen relativ träge ist und der Gleichgewichtszustand nur sehr langsam erreicht wird.

Um das Problem zu lösen, konzipierten die Münchner Wissenschaftler aus den Arbeitsgruppen von Thorsten Hugel und Roland Netz ein neuartiges Modellsystem. Die Umsetzung erfolgte mit Hilfe des Oberflächen-Experten Dr. José Garrido vom Walter-Schottky-Institut der TUM und des Biochemikers Prof. Thomas Scheibel, Universität Bayreuth. Unterstützung bekamen die Forscher auch vom AFM-Spezialisten Prof. Hermann Gaub von der Ludwig-Maximilians-Universität München.

Die Wissenschaftler befestigten ein einzelnes Peptid-Molekül mittels einer kovalenten Bindung an der Spitze eines Rasterkraftmikroskops (AFM). Das verwendete Peptid ist ein Hauptbestandteil der Spinnenseide. Die auf diese Weise präparierte Spitze wurde so weit an eine extrem glatte hydrophobe Diamant-Oberfläche angenähert, bis die Peptid-Kette auf der Oberfläche adsorbierte. Die Spitze wurde nach oben gezogen und gleichzeitig die dabei aufgewendete Kraft gemessen.

Mit den Ergebnissen können die Forscher zeigen, dass die Peptid-Kette durch den Zug zunächst auf der Oberfläche entlang gleitet, bis sie sich komplett von ihr löst, also desorbiert. Aus über 200 dieser Messungen kann eine mittlere Desorptionskraft von 58 Pico-Newton ermittelt werden. Dieser Wert stimmt gut mit der Kraft von 54 Pico-Newton überein, die sich für das Modellsystem aus molekular-dynamischen Simulationen ergibt. Prof. Netz betont: "Dies ist nach unserem Wissen die erste quantitative Untersuchung der hydrophoben Wechselwirkung, die eine Übereinstimmung zwischen Experiment und Theorie zeigt."

Dank dieser Bestätigung konnte anhand der theoretischen Simulation der grundlegende Mechanismus der Wechselwirkung entschlüsselt werden. Überraschend wurde deutlich, dass die Dispersions- oder auch van-der-Waals-Kräfte zwischen der Oberfläche und der Peptid-Kette genauso stark sind wie die Solvationskräfte aufgrund der gestörten Molekül-Struktur des Wassers in der Nähe von Peptid und Oberfläche. Netz ist sich sicher: "Damit ist eine unter Experten lange geführte Diskussion beendet. Keine der beiden Kräfte dominiert. In einem synergetischen Zusammenspiel bestimmen beide Teilbeiträge gleichermaßen die resultierende hydrophobe Anziehung." Mit diesem neuartigen Messprinzip soll in Zukunft die Wechselwirkung verschiedenster Peptid-Moleküle mit unterschiedlichen Oberflächen untersucht und damit die Vorhersage von Protein-Strukturen und Eigenschaften verbessert werden.

Die aktuelle Arbeit fand im Rahmen des Exzellenzclusters "Nanosystems Initiative Munich (NIM)" statt, das sich zum Ziel gesetzt hat, funktionale Nanostrukturen für Anwendungen in der Medizin und in der Informationsverarbeitung zu entwickeln und zu erforschen.

Veröffentlichung:
"Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces", D. Horinek, A. Serr, M. Geisler, T. Pirzer, U. Slotta, S. Q. Lud, J. A. Garrido, T. Scheibel, T. Hugel, and R. R. Netz, PNAS, 105, no. 8 (2008)
Kontakt:
Prof. Dr. Roland Netz
Physik Department (T37)
Technische Universität München
Tel.: +49 (0)89 289 12394
E-Mail: netz@ph.tum.de
Dr. Peter Sonntag
Nanosystems Initiative Munich
Presse- und Öffentlichkeitsarbeit
Tel.: +49 (0)89 2180 5091
E-Mail: peter.sonntag@lmu.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.physik.tu-muenchen.de/lehrstuehle/T37
http://www.nano-initiative-munich.de

Weitere Berichte zu: Biologie Peptid-Kette

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kernoberfläche beeinflusst Neutronenbindung
17.05.2019 | Technische Universität Darmstadt

nachricht Von 0 auf 1 in einer billionstel Sekunde
16.05.2019 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quanten-Cloud-Computing mit Selbstcheck

Mit einem Quanten-Coprozessor in der Cloud stoßen Innsbrucker Physiker die Tür zur Simulation von bisher kaum lösbaren Fragestellungen in der Chemie, Materialforschung oder Hochenergiephysik weit auf. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie Phänomene der Teilchenphysik auf 20 Quantenbits simuliert haben und wie der Quantensimulator das Ergebnis erstmals selbständig überprüft hat.

Aktuell beschäftigen sich viele Wissenschaftler mit der Frage, wie die „Quantenüberlegenheit“ auf heute schon verfügbarer Hardware genutzt werden kann.

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

MS Wissenschaft startet Deutschlandtour mit Fraunhofer-KI an Bord

17.05.2019 | Veranstaltungen

Wie sicher ist autonomes Fahren?

16.05.2019 | Veranstaltungen

Chemie – das gemeinsame Element

16.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Integrierte Zuckermoleküle schonen Zellkulturen

17.05.2019 | Biowissenschaften Chemie

Erstmals Einsatz von gefäßschützendem Antikörper bei kardiogenem Schock

17.05.2019 | Biowissenschaften Chemie

Additive Maschinen lernen Superlegierungen kennen

17.05.2019 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics