Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenelektronik - keine halben Sachen

18.02.2008
Physiker am Augsburger EKM weisen nach, dass die Magnetfeldperiode für Supraleiter h/e beträgt und damit doppelt so groß ist, wie bisher angenommen.

Die Elektronen in einem Atom bewegen sich nach den Gesetzen der Quantenmechanik in sogenannten Orbitalen, die 100 Millionen mal kleiner sind als eine Münze. Ganz ähnlich bewegen sich auch in Metallringen die Elektronen in Orbitalen, die sich allerdings über den gesamten Ring erstrecken können.

Gemeinsam mit einem Gastwissenschaftler aus Moskau haben Augsburger Physiker am Zentrum für Elektronische Korrelationen und Magnetismus (EKM) solche Ringorbitale untersucht. Die Ergebnisse dieser Untersuchungen, die jetzt in der aktuellen Ausgabe des Journals "Nature Physics" veröffentlicht wurden, sind überraschend: Sie widersprechen der etablierten Lehrmeinung, wonach die Magnetfeldperiode in Supraleitern h/2e sei, nachdem die Ladung der stromtragenden Elektronenpaare 2e beträgt.

Wie die Augsburger Forschergruppe entdeckte, ist die Magnetfeldperiode mit h/e doppelt so groß wie bislang angenommen. Für zahlreiche elektronische Anwendungen ist dies von hoher Relevanz. Die Berechnung der genannten Orbitale gelang den Augsburger Physikern mit einem eigens entwickelten Computerprogramm, durch das zudem die faszinierende Schönheit dieser elektronischen Strukturen offenbart wurde (siehe Abbildungen).

In supraleitenden Metallen kann der Strom in Ringen verlustfrei kreisen. Der Stromfluss, der durch die Elektronen in den Ringorbitalen getragen wird, kann durch ein Magnetfeld gesteuert werden, das den leeren Innenraum des Rings durchdringt. Das Magnetfeld verändert dabei die Orbitale in so raffinierter Weise, dass sich mit wachsendem Magnetfeld die Stromrichtung immer wieder umdreht. Die Periodizität dieser Oszillation wird durch zwei fundamentale Naturkonstanten bestimmt: durch das Planck'sche Wirkungsquantum h und durch die Elementarladung e. Mit der vor fünfzig Jahren entwickelten Theorie der Supraleitung hatte sich die Überzeugung etabliert, dass für Supraleiter die Magnetfeldperiode h/2e sei, da der Strom von Elektronenpaaren getragen wird und die Ladung dieser Paare 2e beträgt.

Die Physiker in Augsburg entdeckten jedoch, dass die Magnetfeldperiode in der Regel h/e ist, obwohl die Elektronen im Supraleiter gepaart sind. Damit ist diese Konstante also doppelt so groß, wie man jahrzehntelang zu wissen glaubte. Dies gilt auch für die Hochtemperatursupraleiter, für deren Entdeckung 1987 der Physik-Nobelpreis vergeben wurde. Da kleine supraleitende Ringe häufig in supraleitender Elektronik integriert sind, ist diese Entdeckung für elektronische Anwendungen relevant, zum Beispiel für schnelle Schalter in der Datenverarbeitung oder für supraleitende Qubits, die als elementare Bausteine einmal für Quanten-Computer eingesetzt werden sollen.

Die von den Physikern Florian Loder, Arno Kampf, Thilo Kopp, Jochen Mannhart, Christof Schneider und Yuri Barash in Nature Physics 4, 112 (2008) publizierten Forschungsergebnisse entstanden im Augsburger Sonderforschungsbereich "Kooperative Phänomene im Festkörper: Metall-Isolator-Übergänge und Ordnung mikroskopischer Freiheitsgrade" (SFB 484) der Deutschen Forschungsgemeinschaft.

Originalbeitrag:

"Magnetic flux periodicity of h/e in superconducting loops", F. Loder, A. P. Kampf, T. Kopp, J. Mannhart, C. W. Schneider, and Y. S. Barash, Nature Physics 4, 112 (2008). (doi:10.1038/nphys813) http://www.nature.com/nphys/journal/v4/n2/abs/nphys813.html

Kontakt und weitere Informationen:

Prof. Dr. Thilo Kopp & Prof. Dr. Arno P. Kampf
Zentrum für Elektronische Korrelationen und Magnetismus
Universität Augsburg
D-86135 Augsburg
Telefon 0821/598-3676 oder -3702
thilo.kopp@physik.uni-augsburg.de
arno.kampf@physik.uni-augsburg.de
Bildergalerie mit weiteren Abbildungen von Elektronenorbitalen unter:
http://www.uni-augsburg.de/exp6/Ringorbitale
Weitere Informationen:
http://www.physik.uni-augsburg.de/exp5/ekm/ekm.shtml - EKM
http://www.physik.uni-augsburg.de/sfb484/index.de.shtml - SFB 484
Korrektur vom 16.02.2008
Sollten Sie über den angegebenen Link http://www.uni-augsburg.de/exp6/Ringorbitale keinen Zugang zur Fotogalerie erhalten, dann wählen Sie bitte http://www.physik.uni-augsburg.de/exp6/research/theory/ringorbitals/ringorbitals_d.shtml

Klaus P. Prem | idw
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Berichte zu: Magnetfeld Magnetfeldperiode Supraleiter

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf die Nähe kommt es an: Wie Kristall den Widerstand von Graphen beeinflusst
28.01.2020 | Georg-August-Universität Göttingen

nachricht Wie man ein Bild von einem Lichtpuls macht
27.01.2020 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnellster hochpräziser 3D-Drucker

3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Viele Anwendungen benötigen jedoch einen präzisen Druck im Mikrometermaßstab und eine deutlich höhere Druckgeschwindigkeit. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. Dieses System präsentieren sie in einem Sonderband der Zeitschrift Advanced Functional Materials. (DOI: 10.1002/adfm.201907795).

Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter...

Im Focus: Wie man ein Bild von einem Lichtpuls macht

Um die Form von Lichtpulsen zu messen, brauchte man bisher komplizierte Messanlagen. Ein Team von MPI Garching, LMU München und TU Wien schafft das nun viel einfacher.

Mit modernen Lasern lassen sich heute extrem kurze Lichtpulse erzeugen, mit denen man dann Materialien untersuchen oder sogar medizinische Diagnosen erstellen...

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Im Focus: Integrierte Mikrochips für elektronische Haut

Forscher aus Dresden und Osaka präsentieren das erste vollintegrierte Bauelement aus Magnetsensoren und organischer Elektronik und schaffen eine wichtige Voraussetzung für die Entwicklung von elektronischer Haut.

Die menschliche Haut ist faszinierend und hat viele Funktionen. Eine davon ist der Tastsinn, bei dem vielfältige Informationen aus der Umgebung verarbeitet...

Im Focus: Dresdner Forscher entdecken Mechanismus bei aggressivem Krebs

Enzym blockiert Wächterfunktion gegen unkontrollierte Zellteilung

Wissenschaftler des Universitätsklinikums Carl Gustav Carus Dresden im Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) haben gemeinsam mit einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lichtgetriebene Nanomotoren - Erfolgreich gekoppelt

28.01.2020 | Biowissenschaften Chemie

Warum Gesunde für Kranke so wichtig sind! – Vergleichsstudie geht Fibromyalgie-Syndrom auf den Grund

28.01.2020 | Biowissenschaften Chemie

Kiss and Run: Wie Zellen ihre Bestandteile trennen und recyceln

28.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics