Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stabile Elektronen-Spins rücken Quantencomputer in greifbare Nähe

31.01.2008
Wissenschaftler des Swiss Nanoscience Institute an der Universität Basel und des Massachusetts Institute of Technology ist es erstmals gelungen, den magnetischen Zustand eines einzelnen Elektrons, den so genannten Elektronenspin, während einer ganzen Sekunde stabil zu halten.

Damit ist ein wichtiger Meilenstein zur Realisierung von Elektronenspin-Speichern und zur Entwicklung von Quantencomputern geschaffen. Vor einigen Jahren wurde die Elektronenspinstabilität noch auf Mikrosekunden geschätzt. Die Forschungsergebnisse werden heute (31. Januar 2008) in der renommierten Fachzeitschrift "Physical Review Letters" veröffentlicht.

Die Stabilität von Elektronenspins ist eine wichtige Voraussetzung für die Realisierung von Elektronenspin-Speichern und für die Entwicklung des heute noch hypothetischen Quantencomputers. Quantencomputer, die Supercomputer der Zukunft, basieren auf der Idee, Quantenphysik fuer Computer-Rechnungen zu verwenden. Sie sollen dereinst in der Lage sein, komplizierte Rechenprozesse in kürzester Zeit zu erledigen. Zum Beispiel für die Entschlüsselung eines RSA-Sicherheitscodes, wie er heute im E-Banking verwendet wird, würde ein Quantencomputer statt einem Jahr nur noch wenige Sekunden benötigen.

Im Rahmen einer internationalen Zusammenarbeit zwischen der Forschungsgruppe um Prof. Dominik Zumbühl vom Swiss Nanoscience Institut an der Universität Basel und dem Massachusetts Institute of Technology (MIT) ist es nun erstmals gelungen, den magnetischen Zustand eines einzelnen Elektrons, den so genannten Elektronenspin, während einer ganzen Sekunde stabil zu halten. Die Physiker isolierten dazu ein einzelnes Elektron in einer durch Nanostrukturen erzeugten Falle, bei einer sehr tiefen Temperatur von einem Zehntel Grad Celsius über dem absoluten Nullpunkt. Zusätzlich setzten sie das Elektron starken Magnetfeldern aus, wie sie auch bei Magnetresonanztomographen verwendet werden.

Das Konzept geht auf eine Vorhersage des Basler Physikprofessors Daniel Loss zurück. Die vorliegenden Experimente bestätigen dessen Rechnungen sehr präzise. Verwendet man die Verschränkung (eine Art Korrelation, z.B. zwischen zwei Elektronen, die in der Quantenphysik möglich ist, nicht aber in der klassischen Physik) mehrerer benachbarter Elektronenspins, so könnte daraus der Quantencomputer realisiert werden.

Swiss Nanoscience Institute
Das Swiss Nanoscience Institute (SNI) ging aus dem Nationalen Forschungsschwerpunkt (NFS) Nanowissenschaften hervor und bildet einen universitären Forschungsschwerpunkt an der Universität Basel. Im SNI wird grundlagenwissenschaftliche mit anwendungsorientierter Forschung verknüpft. Innerhalb verschiedener Projekte beschäftigen sich die Forschenden mit Strukturen im Nanometerbereich. Sie möchten Impulse für Lebenswissenschaften, Nachhaltigkeit, Informations- und Kommunikationstechnologie geben. Die Universität Basel fungiert als Leading House und koordiniert das NFS-Netzwerk aus Hochschul- und Forschungsinstituten und Industriepartnern, das vom Schweizerischen Nationalfonds im Auftrag des Bundes durchgeführt wird, sowie das vom Kanton Aargau finanzierte Argovia-Netzwerk. Mit Gründung des SNI sichert sich die Universität Basel ihre international anerkannte Stellung als Exzellenzzentrum für Nanowissenschaften.
Weitere Auskünfte
Prof. Dr. Dominik Zumbühl, Departement Physik der Universität Basel, Klingelbergstrasse 82, 4056 Basel. Tel. 061 267 36 93, E-Mail: Dominik.Zumbuhl@unibas.ch
Originalpublikation
Phys. Rev. Lett. (2008).
DOI: 10.1103/PhysRevLett.
Verwandte Seiten
http://prl.aps.org/
http://zumbuhllab.unibas.ch/

Hans Syfrig | idw
Weitere Informationen:
http://www.unibas.ch

Weitere Berichte zu: Elektron Elektronenspin Quantencomputer

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
19.10.2018 | Universität Greifswald

nachricht Mission BepiColombo: Jenaer Sensor hilft, Geheimnisse des Merkur zu entschlüsseln
19.10.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics