Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Anti-Elektronen in der Galaxis

10.01.2008
Forscher entdecken mit dem Satelliten INTEGRAL eine ungleiche Verteilung von Positronen und vermuten Röntgendoppelsterne als ihre Quellen

Alles hat zwei Seiten - auch die Materie: So existiert zu jedem Elementarteilchen ein Antiteilchen mit derselben Masse, aber der entgegengesetzten elektrischen Ladung. Zwar haben die Astronomen bisher nirgendwo im Weltall die in der Science-Fiction-Literatur viel beschworene Antimaterie entdeckt, wohl aber einen ihrer Bausteine: das Gegenstück zum Elektron, das sogenannte Positron. Jetzt zeigen Beobachtungen mit dem europäischen Satelliten INTEGRAL, dass diese positiv geladenen Partikel innerhalb unseres Milchstraßensystems ungleich verteilt sind - im Westen der zentralen Region wurden entlang der galaktischen Scheibe etwa doppelt so viele Positronen gefunden wie im Osten. Eine ähnliche Verteilung fanden die Forscher um Georg Weidenspointner vom Garchinger Max-Planck-Institut für extraterrestrische Physik für eine Population von Röntgendoppelsternen. Offenbar stammt also ein Großteil der Positronen aus dieser Quelle (Nature, 10. Januar 2008).


Ungleichgewicht: Die Karte (oben) zeigt den gesamten Himmel im Licht der 511 keV-Strahlung; in der Mitte das Zentrum der Milchstraße. Die Strahlung aus der westlichen galaktischen Scheibe ist deutlich heller als die aus der östlichen. Ein sehr ähnliches Bild ergibt die Verteilung der massearmen Röntgendoppelsterne (Karte unten). Forscher schließen daraus auf einen Zusammenhang von Sternen und Strahlung. Bild: Weidenspointner et al., Nature, 10. Januar 2008

Beim Nachweis der Positronen kommt den Wissenschaftlern gleichsam ein Knalleffekt zu Hilfe: Wenn ein Antiteilchen auf sein Gegenstück der normalen Materie trifft, löschen sich beide gegenseitig aus. Die bei diesem Annihilation genannten Prozess in Form von Gammastrahlung freigesetzte Energie entspricht der Masse des Teilchen-Antiteilchen-Paares. Von besonderer Bedeutung ist dabei die Annihilation von Elektron und Positron in zwei Gammaquanten der charakteristischen Energie von 511.000 Elektronenvolt (511 keV).

Die Existenz von Positronen in den zentralen Regionen unserer Galaxis wurde bereits vor etwa 30 Jahren entdeckt. Detektoren für Gammastrahlung, von Ballons an den oberen Rand der Erdatmosphäre getragen, registrierten die charakteristische Strahlung bei 511 keV aus der ungefähren Richtung des galaktischen Zentrums. Der Ursprung der Positronen blieb jedoch rätselhaft und wird seither lebhaft diskutiert.

Einer der Theorien zufolge entstammen die Positronen dem Zerfall von radioaktiven Kernen, die in großer Zahl in stellaren Explosionen (Supernovae) entstehen. Besondere Bedeutung kommt dabei dem radioaktiven Isotop 56Co (Cobalt) mit einer Halbwertszeit von etwa 77 Tagen zu. Es ist jedoch noch umstritten, ob die bei dessen Zerfall erzeugten Positronen in ausreichender Anzahl die Überreste des explodierten Sterns verlassen können, um die beobachtete Verteilung der 511 keV Strahlung zu erklären. Ein anderes wichtiges radioaktives Isotop ist 26Al (Aluminium) mit einer Halbwertszeit von etwa einer Million Jahren, das vor allem von massereichen Sternen erzeugt wird. Doch auf das Konto von 26Al gehen nach neuesten Messungen nur etwa ein Viertel der in unserer Galaxis beobachteten Positronen.

Deshalb haben einige Theoretiker vorgeschlagen, die Positronen entstünden bei der Annihilation oder dem radioaktiven Zerfall von Teilchen der rätselhaften dunklen Materie. Sie sollte sich sphärisch um das Zentrum unserer Galaxis sammeln und würde damit auf einfache Weise erklären, warum die Positronen vor allem in dieser Region beobachtet werden.

Jetzt haben die Wissenschaftler mit INTEGRAL den entscheidenden Hinweis gefunden, dass auch die sphärisch verteilte dunkle Materie nicht die Hauptquelle der Positronen sein kann: Westlich der zentralen Region unserer Galaxis wurde etwa doppelt so starke 511 keV-Strahlung entlang der galaktischen Scheibe beobachtet wie östlich davon. Eine solch ungleiche Verteilung erscheint sehr überraschend, weil in der inneren Galaxis sowohl Gas als auch Sterne relativ gleichmäßig verteilt sind.

Interessanterweise zeigen aber die bisher mit INTEGRAL im Licht der harten (hochenergetischen) Röntgenstrahlung gefundenen sogenannten massearmen Röntgendoppelsterne eine ähnlich ungleiche Verteilung wie die charakteristische 511 keV-Strahlung. "Diese Übereinstimmung legt die Vermutung nahe, dass diese Röntgendoppelsterne für einen wesentlichen Anteil der Positronen in unserer Galaxis sorgen - sowohl in der Zentralregion als auch in der Scheibe", sagt Georg Weidenspointner vom Max-Planck-Institut für extraterrestrische Physik.

Ein massearmer Röntgendoppelstern ist ein System, in dem ein sonnenähnlicher Stern und ein kompaktes stellares Objekt (ein Neutronenstern oder ein schwarzes Loch) einander in relativ geringem Abstand umkreisen. Die Gravitation des kompakten Objekts ist dabei so stark, dass es Gas von seinem Begleiterstern absaugt. Das Gas stürzt jedoch nicht direkt auf das kompakte Objekt, sondern umkreist es zunächst in einer Akkretionsscheibe. Dabei erhitzt sich das Gas durch innere Reibung derart stark, dass es im harten Röntgenlicht hell aufleuchtet. Bei diesem Prozess kann die Intensität der Strahlung so hoch werden, dass aus der Energie zweier Lichtteilchen ein Elektron-Positron-Paar entsteht - der umgekehrte Prozess der Annihilation von Elektron und Positron.

"Einfache Abschätzungen zeigen, dass die Positronen in unserer Galaxis mindestens zur Hälfte von massearmen Röntgendoppelsternen erzeugt werden", sagt Georg Weidenspointner. Die andere Hälfte könnte durch einen ähnlichen Prozess der Massenakkretion vom supermassiven schwarzen Loch im Zentrum unserer Galaxis stammen oder aus Sternexplosionen in der zentralen Region.

INTEGRAL ist für absehbare Zeit das einzige Observatorium, mit dem sich sowohl die charakteristische 511 keV-Strahlung als auch die massearmen Röntgendoppelsterne beobachten lassen. In den kommenden Jahren werden Weidenspointner und seine Kollegen versuchen, ihre Ergebnisse zu erhärten und zu verfeinern.

Originalveröffentlichung:

Georg Weidenspointner, Gerry Skinner, Pierre Jean, Jürgen Knödlseder, Peter von Ballmoos, Giovanni Bignami, Roland Diehl, Andrew W. Strong, Bertrand Cordier, Stéphane Schanne & Christoph Winkler
An asymmetric distribution of positrons in the Galactic disk revealed by γ-rays
Nature, 10. Januar 2008

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Galaxis Integral Röntgendoppelstern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics