Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nobelpreis-Technik auf einem Chip

20.12.2007
Die 1998 am Max-Planck-Institut für Quantenoptik (MPQ) in Garching erfundene Frequenzkammtechnik hat sowohl die Grundlagenforschung als auch die Laserentwicklung und deren Anwendungen so stark beeinflusst und vorangetrieben, dass ihr Erfinder Theodor Hänsch (MPQ) dafür im Jahr 2005 gemeinsam mit seinem US-Kollegen John Hall den Nobelpreis für Physik erhielt.

Die hochpräzisen Messgeräte zur Bestimmung optischer Frequenzen sind mittlerweile relativ kompakt und werden kommerziell vertrieben. Ungleich handlicher jedoch ist der nur 75 Mikrometer große Mikroresonator, mit dem jetzt Dr. Tobias Kippenberg und seinen Mitarbeitern im "Laboratory of Photonics" am MPQ die Erzeugung von Frequenzkämmen gelang (Nature, 20. Dezember 07). Frequenzkämme auf einem Mikrochip könnten Techniken der Zeitmessung und der Datenübertragung geradezu revolutionieren.


Monochromatisches Licht, symbolisiert durch die grüne Linie links, wird innerhalb des Mikroresonators in einen Frequenzkamm umgewandelt, dargestellt durch das bunte Strahlenbündel rechts. MPQ

Im Prinzip ist ein Frequenzkamm eine Art Lineal, mit dem sich unbekannte optische (d.h. sehr hohe) Frequenzen von Licht hochpräzise bestimmen lassen. In dem von Hänsch und Hall verfolgten Ansatz beruht seine Erzeugung auf einem Modenkopplungsprozess in Kurzpuls-Lasern. Dabei entsteht Laserlicht, das rund 100 000 sehr dicht benachbarte Spektrallinien enthält, deren Frequenzabstand immer gleich und extrem genau bekannt ist - dies ist der Grund für die Bezeichnung "Kamm". Wenn man diesen Frequenzkamm mit einem anderen Laserstrahl überlagert, dann lässt sich aus der resultierenden Schwebung dessen Frequenz mit bis dato unerreichter Genauigkeit bestimmen. Ein Frequenzkamm dieser Art enthält viele optische Bauelemente und ist daher sehr aufwendig.

Nun ist es der Max-Planck-Nachwuchsgruppe von Tobias Kippenberg - seit 2007 auch "Marie Curie Excellence Grant Team" - in Zusammenarbeit mit Ronald Holzwarth von Menlo Systems (diese Firmenausgründung des MPQ vertreibt die Frequenzkammtechnik inzwischen weltweit) gelungen, einen Frequenzkamm mit Hilfe einer winzigen Mikrostruktur zu erzeugen. Die Wissenschaftler verwenden in ihrem Experiment einen auf einem Silizium-Chip hergestellten torusförmigen Glas-Resonator mit einem Durchmesser von nur 75 Mikrometern, der am Lehrstuhl für Festkörperphysik (Prof. Jörg Kotthaus) der Ludwig-Maximilians-Universität München (LMU) hergestellt wird. Indem sie einen Laserstrahl in einem "Nano-Draht" aus Glas dicht daran vorbeiführen, koppeln sie Licht in diese monolithische Struktur ein.

Solche optischen Resonatoren können Licht relativ lange speichern. Dies kann zu extrem hohen Lichtintensitäten - sprich Photonendichten - führen, bei denen eine Fülle nichtlinearer Effekte auftreten. Und ein solcher nichtlinearer "Kerr-Effekt" ist es, der die Entstehung eines Frequenzkamms ermöglicht: In einem 4-Photonen-Prozess werden zwei Lichtquanten gleicher Energie in zwei Photonen umgewandelt, von denen das eine Lichtquant eine höhere, das andere eine niedrigere als die ursprüngliche Energie hat. Dabei können die neu erzeugten Photonen ihrerseits mit den ursprünglichen Lichtquanten interagieren und dabei wiederum neue Frequenzen erzeugen. Aus dieser Kaskade entsteht ein überraschend breites Spektrum von Frequenzen ganz ohne die Verstärkung durch ein aktives Lasermedium, die bei der herkömmlichen Methode notwendig ist. "Interessanterweise fand sich in der Literatur kein Hinweis darauf, dass Frequenzkämme auf diese Weise erzeugt werken können", konstatiert Pascal Del'Haye, Doktorand am Projekt. "Es handelt sich dabei um einen völlig neuen Entstehungsprozess, auf den wir fast zufällig gestoßen sind", bekräftigt Dr. Tobias Kippenberg.

Das neue Verfahren ist aber nur dann tauglich, wenn der Abstand zwischen allen erzeugten Frequenzen immer exakt gleich ist und auf diese Weise - obschon die Mikroresonatoren selbst kein vollkommen äquidistantes Modenspektrum haben - ein perfekter Kamm erzeugt wird. In langwierigen Präzisionsmessungen verglichen die Doktoranden Pascal Del'Haye und Albert Schließer in Kooperation mit Ronald Holzwarth das Spektrum des monolithisch erzeugten Frequenzkamms mit einem kommerziellen Kamm der Firma Menlo Systems. Dabei zeigten sie, dass die im Mikroresonator erzeugten Frequenzen äquidistant liegen, wobei sie Abweichungen bis zum 10-18ten Bruchteil der Lichtfrequenzen ausschließen konnten.

Der neuartige Frequenzkamm könnte in der Zukunft zur optischen Frequenzbestimmung verwendet werden und damit auch für die Konstruktion von Uhren mit extrem hoher Genauigkeit. Ein weiteres hochinteressantes Anwendungsfeld liegt in der optischen Telekommunikation: Während beim herkömmlichen Frequenzkamm die Linien extrem dicht liegen und recht lichtschwach sind, haben die ca. 130 Spektrallinien des monolithischen Frequenzkamms einen Abstand ungefähr 400 Gigahertz und Leistungen in der Größenordnung von einem Milliwatt (0 dBm). Dies entspricht ziemlich genau den typischen Anforderungen für die "Träger" der Datenkanäle in der faserbasierten optischen Telekommunikation. Während bisher für jeden Frequenzkanal ein eigener Generator mit eigenem Laser erforderlich ist, würde es der neue Ansatz ermöglichen, mit einem einzigen Bauelement eine Vielzahl von Datenkanälen zu definieren.

Noch sind nicht alle Aspekte des Entstehungsprozesses verstanden, und auch an der Technik muss noch gefeilt werden, bevor der Frequenzkamm in der Praxis zum Einsatz kommen kann. Im Hinblick auf das hohe Anwendungspotential haben die Wissenschaftler ihre Entdeckung dennoch bereits weltweit zum Patent angemeldet.

Die aktuell in der Zeitschrift Nature vorgestellte Arbeit entstand im Rahmen des Exzellenz-Clusters "Nanosystems Initiative Munich", dessen Ziel es ist, funktionale Nanostrukturen für Anwendungen in der Medizin und in der Informationsverarbeitung zu entwickeln, zu erforschen und zum Einsatz zu bringen. [O.M.]

Veröffentlichung:
"Optical frequency comb generation from a monolithic microresonator",
P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, Nature, 20. Dezember 2007
Kontakt:
Dr. Tobias Kippenberg
Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 727
Fax: +49 - 89 / 32905 200
E-Mail: tobias.kippenberg@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de/k-lab/

Weitere Berichte zu: Frequenzkamm Lichtquant MPQ Mikroresonator

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Mit Gravitationswellen die Dunkle Materie ausleuchten
22.10.2018 | Universität Zürich

nachricht Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
19.10.2018 | Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Gravitationswellen die Dunkle Materie ausleuchten

Schwarze Löcher stossen zusammen, Gravitationswellen breiten sich durch die Raumzeit aus - und ein riesiges Messgerät ermöglicht es, die Struktur des Universums zu erkunden. Dies könnte bald Realität werden, wenn die Raumantenne LISA ihren Betrieb aufnimmt. UZH-Forschende zeigen nun, dass LISA auch Aufschluss über die schwer fassbaren Partikel der Dunklen Materie geben könnte.

Dank der Laserinterferometer-Raumantenne (LISA) können Astrophysiker Gravitationswellen beobachten, die von Schwarzen Löchern ausgesendet werden. Diese...

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Lehren und Lernen mit digitalen Medien im Fokus

22.10.2018 | Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemie aus der Luft: atmosphärischem Stickstoff als Alternative

22.10.2018 | Biowissenschaften Chemie

Gebirge bereiten Boden für Artenreichtum

22.10.2018 | Geowissenschaften

Neuer Wirkstoff gegen Anthrax

22.10.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics