Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung

20.02.2018

Viele chemische Prozesse sind so schnell, dass nur ihr ungefährer Ablauf bekannt ist. Zur Aufklärung dieser Prozesse hat nun ein Team der Technischen Universität München (TUM) eine Methode mit einer Auflösung von Trillionstel-Sekunden entwickelt. Die neue Technik soll helfen, Prozesse wie die Photosynthese besser zu verstehen oder schnellere Computerchips zu entwickeln.

Ein wichtiger Teilschritt vieler chemischer Prozesse sind Ionisierungen. Ein typisches Beispiel dafür ist die Photosynthese. Diese Reaktionen dauern nur wenige Femto- (Billiardstel-Sekunden) oder sogar nur einige hundert Attosekunden (Trillionstel-Sekunden). Weil sie so extrem schnell ablaufen, sind zwar Anfangs- und Endprodukte der Reaktionen bekannt, nicht jedoch die Reaktionswege und Zwischenprodukte.


Messeinrichtung im Physik-Department der TU München

Bild: Michael Mittermair / TUM


Prof. Dr. Birgitta Bernhardt an der Messkammer im Physik-Department der TU München.

Foto: Michael Mittermair / TUM

Um solche ultraschnellen Prozesse verfolgen zu können, braucht die Wissenschaft daher eine Messtechnik, die noch schneller ist als der beobachtete Prozess selbst. Dies ist mit der sogenannten „Pump-Probe Spektroskopie“ möglich.

Dabei wird die Probe von einem ersten Laserpuls angeregt und die Reaktion in Gang gesetzt. Ein zweiter, zeitversetzter Puls fragt dann den momentanen Zustand des Prozesses ab. Durch Wiederholungen der Reaktion mit unterschiedlichen Zeitverzögerungen ergeben sich viele einzelne Momentaufnahmen, die dann zu einem „Video“ zusammengesetzt werden können.

Mehr sehen mit dem Zweiten

Nun ist es Wissenschaftlern um Birgitta Bernhardt, ehemals Mitarbeiterin am Lehrstuhl für Laser- und Röntgenphysik der TU München und inzwischen Junior-Professorin am Institut für Angewandte Physik der Universität Jena, am Beispiel des Edelgases Krypton erstmals gelungen, zwei verschiedene Pump-Probe Spektroskopietechniken zu kombinieren und so die ultraschnellen Ionisierungsprozesse in zuvor nicht möglicher Genauigkeit sichtbar zu machen.

„Vor unserem Experiment konnte man entweder betrachten welcher Anteil des anregenden Lichtes über die Zeit von der Probe absorbiert wird oder messen welche und wie viele Ionentypen dabei entstehen“, erklärt Bernhardt. „Wir haben nun beide Techniken vereint und können auf diese Weise sehen, über welche genauen Schritte die Ionisierung abläuft, wie lange diese Zwischenprodukte bestehen bleiben und was genau der anregende Laserpuls in der Probe tut.“

Kontrolle ultraschneller Prozesse

Mit der Kombination der beiden Messtechniken können die Wissenschaftlerinnen und Wissenschaftler nicht nur ultraschnelle Ionisierungsprozesse aufzeichnen. Durch die Variation der Intensität des zweiten, abfragenden Laserpulses können sie erstmals auch die Ionisierungsdynamik gezielt kontrollieren und auf diese Weise beeinflussen.

„Diese Kontrolle ist ein sehr starkes Instrument“, erklärt Bernhardt. „Wenn wir schnelle Ionisierungsprozesse genau nachvollziehen und sogar beeinflussen können, lernen wir viel Neues über lichtgesteuerte Prozesse wie die Photosynthese – gerade über jene ersten Momente, die diese komplexe Maschinerie in Gang setzen und die bislang kaum verstanden sind.“

Ultraschnelle Computer

Auch für die Entwicklung neuer, schnellerer Computerchips, in denen die Ionisierung von Silizium eine wesentliche Rolle spielt, ist die von Bernhardt und ihren Kollegen entwickelte Technik interessant. Kann man Ionisierungszustände von Silizium innerhalb eines so kurzen Zeitfensters nicht nur abfragen, sondern auch kontrolliert setzen – wie es die ersten Experimente am Krypton nahelegen – könnten Wissenschaftler dies vielleicht einmal nutzen, um neuartige und noch schnellere Computertechnologien zu entwickeln.

Weitere Informationen:

Die Arbeiten sind Ergebnis einer Kooperation der Arbeitsgruppen um Prof. Reinhard Kienberger, Inhaber des Lehrstuhls für Laser- und Röntgenphysik der TU München und Stephan Fritzsche, Professor am Theoretisch-Physikalischen Institut der Friedrich Schiller-Universität Jena.

Die Forschung wurde unterstützt durch das European Research Council (ERC), das Bundesministerium für Bildung und Forschung (BMBF), die Max-Planck-Gesellschaft, das Max-Planck-Institut für Quantenoptik, die Deutschen Forschungsgemeinschaft (im Rahmen des Exzellenzclusters Munich Centre for Advanced Photonics, MAP), die Alexander von Humboldt-Stiftung, die Carl Zeiss-Stiftung, das Donostia International Physics Center der Universität Donostia-San Sebastián (Spanien) und die Arbeitsgruppe Small Quantum Systems des European XFEL in Hamburg.


Publikation:

Konrad Hütten, Michael Mittermair, Sebastian O. Stock, Randolf Beerwerth, Vahe Shirvanyan, Johann Riemensberger, Andreas Duensing, Rupert Heider, Martin S. Wagner, Alexander Guggenmos, Stephan Fritzsche, Nikolay M. Kabachnik, Reinhard Kienberger and Birgitta Bernhardt.
Ultrafast Quantum Control of Ionization Dynamics in Krypton
Nature Communications, 9, 719 (218) – DOI: 10.1038/s41467-018-03122-1
Link: https://www.nature.com/articles/s41467-018-03122-1

Kontakt:

Prof. Dr. Birgitta Bernhardt (Jun.-Prof.)
Friedrich-Schiller-Universität Jena
Abbe Center of Photonics
Albert-Einstein-Straße 6, 07745 Jena, Germany
Tel.: +49 3641 94 7818 – E-Mail: Birgitta.Bernhardt@uni-jena.de

Prof. Dr. Reinhard Kienberger
Technische Universität München
Lehrstuhl für Laser- und Röntgenphysik, E11
James Frank Str., 85748 Garching, Germany
Tel.: +49 89 289 12840 – E-Mail: reinhard.kienberger@tum.de
Internet: http://www.e11.ph.tum.de

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34499/ Link zur Pressemitteilung

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf der Suche nach der verschwundenen Antimaterie: Messungen mit Belle II erfolgreich gestartet
25.03.2019 | Max-Planck-Institut für Physik

nachricht Eisriesen im Labor: Kunststoff hilft HZDR-Forschern, Planeten besser zu verstehen
25.03.2019 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochdruckwasserstrahlen zum flächigen Materialabtrag von hochfesten Werkstoffen erprobt

Beim Fräsen hochfester Werkstoffe wie Oxidkeramik oder Sondermetalle – und besonders bei der Schruppbearbeitung – verschleißen Werkzeuge schnell. Für Unternehmen ist die Bearbeitung dieser Werkstoffe deshalb mit hohen Kosten verbunden. Im Projekt »HydroMill« hat das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen mit seinen Projektpartnern nun gezeigt, dass sich der Hochdruckwasserstrahl zum flächigen Materialabtrag von hochfesten Werkstoffen eignet. War der Einsatz von Wasserstrahlen bislang auf die Schneidbearbeitung beschränkt, zeigen die Projektergebnisse, wie sich hochfeste Werkstoffe kosten- und ressourcenschonender als bisher flächig abtragen lassen.

Diese neue und zur konventionellen Schruppbearbeitung alternative Anwendung der Wasserstrahlbearbeitung untersuchten die Aachener Ingenieure gemeinsam mit...

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nieten, schrauben, kleben im Flugzeugbau: Smarte Mensch-Roboter-Teams meistern agile Produktion

25.03.2019 | HANNOVER MESSE

Auf der Suche nach der verschwundenen Antimaterie: Messungen mit Belle II erfolgreich gestartet

25.03.2019 | Physik Astronomie

HEIDENHAIN auf der CONTROL 2019: Belastbare Systeme für mehr Genauigkeit und Zuverlässigkeit

25.03.2019 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics