Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Außergewöhnliche magnetische Struktur und Spindynamik im magnetoelektrischen Material LiFePO4 entdeckt

06.08.2015

Außergewöhnliche magnetische Struktur und Spindynamik im magnetoelektrischen Material LiFePO4 entdeckt

Ein HZB-Team hat die komplexe magnetische Struktur und die darauf basierende Spindynamik in der magnetoelektrischen Substanz LiFePO4 entschlüsselt. Materialien dieser Klasse werden bereits heute in der Sensorik eingesetzt und haben großes Anwendungspotential in der Datenspeicherung sowie der Spintronik.


HZB-Forscher entschlüsselten an der Neutronenquelle BER II die magnetische Struktur des Materials LiFePO4.

HZB

Mit Experimenten, die an der Neutronenquelle BER II des HZB durchgeführt wurden, identifizierten die Forscher in LiFePO4 einen neuen Zweig im magnetischen Anregungsspektrum und wiesen eine nicht-kollineare magnetische Struktur nach.

Sie zeigten, dass die magnetoelektrischen Eigenschaften aufgrund der sogenannten Dzyaloshinsky-Moriya-Wechselwirkung zustande kommen, die durch die Spin-Bahn-Kopplung magnetischer Momente verursacht wird. Die Ergebnisse sind in der Zeitschrift Physical Review B erschienen (http://dx.doi.org/10.1103/PhysRevB.92.024404).

LiFePO4 ist ein Modellsystem für die Klasse magnetoelektrischer Materialien. Diese Materialien werden heute bereits in der Sensorik eingesetzt und haben großes Anwendungspotential in der Datenspeicherung und der Spintronik.

In magnetoelektrischen Materialien sind Magnetisierung und elektrische Polarisation so miteinander gekoppelt, dass externe magnetische Felder eine elektrische Polarisation induzieren und umgekehrt äußere elektrische Felder zu einer endlichen Magnetisierung führen. Die Kopplung zwischen Magnetisierung und elektrischer Polarisation tritt dann auf, wenn sich kleinste Veränderungen in der Gitterstruktur, an die die elektronische Struktur gekoppelt ist, aufgrund der magnetischen Wechselwirkung auch in der magnetischen Struktur widerspiegeln.

Verkippte magnetische Struktur

Dem HZB-Team um Dr. Rasmus Toft-Petersen ist es nun gelungen, eine winzige Verkippung der magnetischen Momente nachzuweisen, die zur Magnetoelektrizität in dieser Verbindung führt. Die magnetischen Anregungen in der antiferromagnetischen Phase von LiFePO4 wurden am Dreiachsenspektrometer für kalte Neutronen V2/FLEXX an der Neutronenquelle BER II vermessen.

Durch den Nachweis von zwei Zweigen im Anregungsspektrum gelang es, die komplexen magnetischen Wechselwirkungsparameter genau zu bestimmen und die in diesem System vorhandene starke magnetische Anisotropie zu identifizieren. Das Auftreten von ausgeprägter magnetischer Anisotropie ist typischerweise eine Folge starker Spin-Bahn-Kopplung und trägt erheblich zur Bildung des Grundzustands bei.

Dass die Spin-Bahn-Kopplung eine wesentliche Rolle spielt, konnte durch weitere Experimente am Diffraktometer E5 nachgewiesen werden. In den Messungen gaben schwache magnetische Bragg-Peaks den Hinweis auf eine magnetische Struktur, in der die magnetischen Momente nicht völlig parallel zueinander orientiert sind, sondern geringfügig gegeneinander verkippt sind.

Solche Verkippungen können durch die von der Spin-Bahn-Kopplung verursachte Dzyaloshinsky-Moriya-Wechselwirkung entstehen, da sie eine senkrechte Orientierung der Spins gegenüber einer parallelen Ausrichtung bevorzugt.

Modellierung der magnetoelektrischen Eigenschaften

Die Dzyaloshinsky-Moriya-Wechselwirkung ist sehr empfindlich auf die Symmetrie der Kristallstruktur. Legt man an eine Anordnung magnetischer Momente mit verkippter Struktur ein äußeres magnetisches Feld an, ändern sich die Kippwinkel und die mit der Dzyaloshinsky-Moriya-Wechselwirkung verbundene Energie. Das HZB-Team konnte nun zeigen, dass LiFePO4 auf extern angelegte magnetische Felder mit der Verschiebung der Sauerstoffatome reagiert.

Dies führt zur Dzyaloshinsky-Moriya-Wechselwirkung, deren Auftreten ohne Magnetfeld aus Symmetriegründen eigentlich verboten ist. Auf Grundlage dieses Modells wurde die Temperaturabhängigkeit der magnetoelektrischen Koeffizienten berechnet, die die lineare Proportionalität zwischen magnetischem Feld und der elektrischen Polarisation beschreiben. „Die berechneten Koeffizienten sind in guter Übereinstimmung mit experimentellen Daten, die wir in der Literatur aus früheren Messungen gefunden haben, und bestätigen damit das Modell“, sagt HZB-Forscher Dr. Rasmus Toft-Petersen.

Zur Publikation: Phys. Rev. B 92, 024404. “Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4” R. Toft-Petersen, M. Reehuis, T. B. S. Jensen, N. H. Andersen, J. Li, M. Duc Le, M. Laver, C. Niedermayer, B. Klemke, K. Lefmann, and D. Vaknin

Kontakt:
Dr. Rasmus Toft-Petersen
(030) 8062-42171
rasmus.toft-petersen@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14272&sprache=de&ty...
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.024404

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Was die Tiefsee über die Sterne verrät
18.12.2018 | Technische Universität Berlin

nachricht Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
17.12.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Bakterien ein Antibiotikum ausschalten

Forscher des HZI und HIPS haben entdeckt, dass resistente Bakterien den Wirkstoff Albicidin mithilfe eines massenhaft gebildeten Proteins einfangen und inaktivieren

Gegen die immer häufiger auftauchenden multiresistenten Keime verlieren gängige Antibiotika zunehmend ihre Wirkung. Viele Bakterien haben natürlicherweise...

Im Focus: How bacteria turn off an antibiotic

Researchers from the HZI and the HIPS discovered that resistant bacteria scavenge and inactivate the agent albicidin using a protein, which they produce in large amounts

Many common antibiotics are increasingly losing their effectiveness against multi-resistant pathogens, which are becoming ever more prevalent. Bacteria use...

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit Nanopartikeln gegen multi-resistente Keime

19.12.2018 | Biowissenschaften Chemie

Kundenspezifische Diodenlaser und UV-LEDs – vom Chip bis zum einsatzfähigen System

19.12.2018 | Messenachrichten

Megakanäle weltweit im Vergleich

19.12.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics