Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Attosekundenkamera für Nanostrukturen

31.05.2016

Physiker des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik und der Ludwig-Maximilians-Universität haben in Zusammenarbeit mit Wissenschaftlern der Friedrich-Alexander-Universität Erlangen-Nürnberg ein Licht-Materie-Phänomen in der Nanooptik beobachtet, das nur Attosekunden dauert.

Die Wechselwirkung zwischen Licht und Materie ist von besonderer Bedeutung in der Natur, insbesondere in der Photosynthese. Licht-Materie Wechselwirkungen werden auch technisch angewendet und sind für die Elektronik der Zukunft wichtig. Denn eine Technologie, die auf Lichtwellen kodierte Daten überträgt oder speichert, wäre fast 100.000 Mal schneller als heutige Systeme.


Trifft Laserlicht auf eine Nanonadel (gelb), entstehen an der Oberfläche elektromagnetische Nahfelder. Ein zweiter Laserpuls löst aus der Nadel ein Elektron (grün). Dies erlaubt es, die Charakteristik der Nahfelder zu bestimmen. Bild: Christian Hackenberger

Eine Licht-Materie-Wechselwirkung, die den Weg ebnen könnte zu einer von Lichtwellen gesteuerten Elektronik, haben nun Wissenschaftler des Labors für Attosekundenphysik (LAP) der Ludwig-Maximilians-Universität (LMU) und des Max-Planck-Instituts für Quantenoptik (MPQ) in Zusammenarbeit mit Kollegen vom Lehrstuhl für Laserphysik der Friedrich-Alexander-Universität Erlangen-Nürnberg untersucht.

Die Forscher schickten starke Laserpulse auf einen winzigen Nanodraht aus Gold. Die ultrakurzen Laserpulse regten die frei beweglichen Elektronen im Metall zu Schwingungen an. An der Oberfläche des Drahtes entstanden dadurch elektromagnetische „Nahfelder“.

Die Nahfelder pulsierten dann um wenige hundert Attosekunden verschoben gegenüber der Welle des anregenden Lichtfeldes (eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde). Mit Attosekunden Lichtblitzen, die die Forscher anschließend auf den Nanodraht schickten, konnten sie diese winzige Verschiebung der Nahfelder vermessen.

Fällt Licht auf Metalle, kann das im Mikrokosmos eigenartige Dinge an deren Oberfläche auslösen. Das elektromagnetische Feld des Lichts regt Elektronen in den Metallatomen zum Schwingen an. Durch diese Wechselwirkung entstehen sogenannte „Nahfelder“ – elektromagnetische Felder, die nahe der Oberfläche des Metalls lokalisiert sind.

Wie sich diese Nahfelder unter Lichteinfluss verhalten, hat jetzt ein internationales Team von Physikern im Labor für Attosekundenphysik der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik in enger Zusammenarbeit mit Wissenschaftlern des Lehrstuhls für Laserphysik der Friedrich-Alexander-Universität Erlangen-Nürnberg beobachtet.

Dazu schickten die Forscher starke Infrarot-Laserpulse auf einen Nanodraht aus Gold. Diese Laserpulse sind so kurz, dass sie nur über wenige Schwingungen des Lichtfeldes verfügen. Beim Auftreffen auf die Nanonadel regte das Licht kollektive Schwingungen der leitenden Elektronen in dem Verbund aus Goldatomen an. Die Elektronenbewegungen bewirkten die Ausbildung der Nahfelder an der Oberfläche des Drahtes.

Nun wollten die Physiker herausfinden, in welcher zeitlichen Relation die Nahfelder zu den Lichtfeldern standen. Dazu schickten sie kurz nach dem ersten Laserpuls einen zweiten, nur einige hundert Attosekunden kurzen Lichtblitz auf die Nanostruktur.

Der zweite Blitz löste einzelne Elektronen aus dem Nanodraht aus. An der Oberfläche angekommen, wurden die Teilchen durch die Nahfelder beschleunigt und detektiert. Die Analyse dieser Teilchen ergab, dass die Nahfelder rund 250 Attosekunden zeitversetzt zum einfallenden Licht schwingen und seinem Feld quasi voraneilen. Das heißt: Die Nahfeld-Schwingungen erreichen 250 Attosekunden früher einen maximalen Ausschlag als die Schwingung des Lichtfeldes.

„Mit der von uns demonstrierten Messmethode können Felder und Oberflächenwellen an Nanostrukturen, welche in der Lichtwellen-Elektronik eine zentrale Rolle spielen, gestochen scharf abgebildet werden.“, erklärt Prof. Matthias Kling, der Leiter der Experimente in München.

Die Versuche ebnen den Weg hin zu komplexeren Studien der Licht-Materie Wechselwirkung an für die Nanooptik geeigneten Metallen und damit für eine lichtgetriebene Elektronik der Zukunft. Diese Elektronik würde mit Frequenzen von Licht betrieben. Licht schwingt etwa eine Million Milliarden Mal pro Sekunde, also mit Petahertz-Frequenzen. Ebenso viele Schaltvorgänge wären denkbar, rund 100.000 mehr als heute. Die ultimative Grenze der Datenverarbeitung wäre damit erreicht. Thorsten Naeser

Originalveröffentlichung:

B. Förg, J. Schötz, F. Süßmann, M. Förster, M. Krüger, B. Ahn, W. A. Okell, K. Wintersperger, S. Zherebtsov, A. Guggenmos, V. Pervak, A. Kessel, S. A. Trushin, A. M. Azzeer, M. I. Stockman, D. Kim, F. Krausz, P. Hommelhoff, M.F. Kling
Attosecond nanoscale near-field sampling
Nature Communications 31. Mai 2016, 7:11717 doi: 10.1038/ncomms11717 (2016)

Kontakt:

Prof. Dr. Matthias Kling
Ultraschnelle Nanophotonik
Labor für Attosekundenphysik
Department für Physik
Ludwig-Maximilians-Universität München
Am Coulombwall 1
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -234
E-Mail: matthias.kling@mpq.mpg.de

Prof. Dr. Peter Hommelhoff
Lehrstuhl für Laserphysik, Department Physik
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Telefon: +49 (0)9131 / 270 90
E-Mail: peter.hommelhoff@feu.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp
18.10.2019 | Forschungsverbund Berlin e.V.

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics