Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Atomuhren das Erdinnere vermessen

12.11.2012
Ultrapräzise portable Atomuhren stehen kurz vor dem Durchbruch. Bald kann mit Hilfe von Atomuhren der neuesten Generation das Erdinnere kartiert werden.

Das zeigt ein internationales Team, darunter Astrophysiker der Universität Zürich.


Voraussichtlich bereits 2014 soll mit ACES, Atomic Clock Ensemble in Space, ein erster hochpräziser Atomuhr-Prototyp, in das Raumlabor Columbus der Internationalen Raumstation ISS gebracht werden.

Bild: European Space Agency ESA, D. Ducros

Erzlagerstätten oder verborgene Wasservorkommen im Innern der Erde von der Oberfläche aus identifizieren? Ultrapräzise portable Atomuhren werden mithelfen, dass dies in den nächsten Jahren verwirklicht wird. Davon ist ein internationales Team um die Astrophysiker Philippe Jetzer und Ruxandra Bondarescu von der Universität Zürich überzeugt. Wie die Wissenschaftler zeigen, haben diese Atomuhren jetzt das erforderliche Mass an Präzision erreicht, um für geophysikalische Vermessungszwecke eingesetzt werden zu können. Neben der direkten Messung des Geoids – der wahren physikalischen Form der Erde – können solche Atomuhren in Zukunft für die Erkundung des Erdinnern eingesetzt werden.

Geoid bestimmen mit Hilfe der Relativitätstheorie

Heute kann das Geoid der Erde – der Fläche, auf der das gleiche Erdanziehungspotential herrscht – nur indirekt erschlossen werden. Ausgangswert für die Berechnungen bildet die Erdanziehung an der Oberfläche der Ozeane. Um das Geoid im Bereich der Kontinente zu berechnen, werden die relativen Abweichungen der Satellitenumlaufbahnen von der Ideallinie herangezogen und unter Berücksichtigung der tatsächlichen Höhe über Meer des überflogenen Orts aufwändig umgerechnet. Die verfahrensabhängigen Unsicherheiten sind dabei gross. Die geringe geografische Auflösung von ca. 100 Kilometern bringt zusätzliche Unschärfe in die Resultate.

Die Bestimmung des Geoids mit Hilfe von Atomuhren basiert auf Einsteins allgemeiner Relativitätstheorie und wird seit bald dreissig Jahren theoretisch diskutiert. Die Idee ist, dass Uhren, die sich in verschiedenen Distanzen zu einem massiven Körper und dessen Gravitationsfeld befinden, unterschiedlich schnell ticken. Je näher die Uhr beim Körper ist, desto langsamer läuft sie. Der Gangunterschied der beiden Uhren ist allerdings so gering, dass es bislang nicht möglich gewesen ist, die postulierte Zeitdifferenz tatsächlich zu messen. «Die ultrapräzisen Atomuhren der neusten Generation können die Zeitdifferenz zweier dreissig Zentimeter übereinander positionierter Uhren effektiv messen», erläutert Bondarescu und fügt an: «Damit rückt die Vermessung des Geoids der Erde in greifbare Nähe.»

Verlauf tektonischer Platten kartieren

Gemäss Bondarescu wird für die Bestimmung des Geoids eine ultrapräzise Atomuhr auf Meereshöhe platziert, d.h. auf der exakten Höhe des Geoids. Eine zweite solche Atomuhr wird an einen beliebigen Punkt auf dem Festland gebracht und mit der ersten Uhr über ein Glasfaserkabel synchronisiert. Die zweite Uhr wird langsamer oder schneller laufen – je nachdem, ob sie sich unter oder über dem Geoid befindet. Anhand der exakten Höhe über Meer des Messpunktes und der festgestellten Gangunterschiede sind Geophysiker anschliessend in der Lage, Aussagen über die Beschaffenheit des Untergrundes zu machen. Auf diese Weise kann der Verlauf tektonischer Platten, unterirdischer Wasservorkommen oder Erzlagerstätten kartiert werden.

Kartierungen bis in grosse Tiefen möglich

Kartierungen sind grundsätzlich bis in sehr grosse Tiefen möglich, vorausgesetzt die zu messende Struktur im Erdinnern und ihr Dichteunterschied zum Umgebungsmaterial sind ausreichend gross. Wie die Wissenschaftler numerisch aufzeigen, kann mittels ultrapräziser Atomuhren eine Struktur mit einer Ausdehnung von nur 1,5 Kilometern Durchmesser und einer geringfügigen Dichteanomalie von zwanzig Prozent in einer Tiefe von zwei Kilometern detekiert werden.

Zurzeit funktionieren ultrapräzise Atomuhren nur in Labors, d.h. sie sind nicht transportierbar und können entsprechend nicht für Messungen im Feld eingesetzt werden. Doch dies wird sich in den nächsten Jahren ändern: Bereits heute arbeiten verschiedene Unternehmen und Forschungsinstitute, darunter auch das in Neuchâtel ansässige Centre Suisse d’Electronique et de Microtechnique CSEM, an der Entwicklung von portablen ultrapräzisen Atomuhren. «Frühestens 2022 wird eine solch ultrapräzise portable Atomuhr an Bord eines ESA-Satelliten ins All fliegen», sagt Prof. Philippe Jetzer, Schweizer Delegierter der STE-Quest-Satellitenmission, deren Ziel es ist, die allgemeine Relativitätstheorie sehr genau zu prüfen. Bereits 2014 oder 2015 soll das «Atomic Clock Ensemble in Space ACES» zur Internationalen Raumstation ISS gebracht werden. ACES ist ein erster Prototyp, der allerdings noch nicht die Präzision von STE-QUEST hat.

Literatur:
Ruxandra Bondarescu, Mihai Bondarescu, György Hetényi, Lapo Boschi, Philippe Jetzer, Jayashree Balakrishna. Geophysical applicability of atomic clocks: direct continental geoid mapping. Geophysical Journal International. 24 August, 2012. DOI: 10.1111/j.1365-246X.2012.05636.x
Kontakt:
Dr. Ruxandra Bondarescu (Anfragen nur in englischer Sprache)
Institut für Theoretische Physik
Universität Zürich
Tel. +41 44 635 58 04
E-Mail: ruxandra@physik.uzh.ch
Prof. Philippe Jetzer
Universität Zürich
Institut für Theoretische Physik
Tel. +41 44 63 55819
E-Mail: jetzer@physik.uzh.ch

Nathalie Huber | Universität Zürich
Weitere Informationen:
http://www.uzh.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neuer Blick auf „seltsame Metalle“
17.01.2020 | Technische Universität Wien

nachricht Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik
16.01.2020 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik

Um den Transfer von Forschungsentwicklungen aus dem Bereich der Quantensensorik in industrielle Anwendungen voranzubringen, entsteht am Fraunhofer IAF ein Applikationslabor. Damit sollen interessierte Unternehmen und insbesondere regionale KMU sowie Start-ups die Möglichkeit erhalten, das Innovationspotenzial von Quantensensoren für ihre spezifischen Anforderungen zu evaluieren. Sowohl das Land Baden-Württemberg als auch die Fraunhofer-Gesellschaft fördern das auf vier Jahre angelegte Vorhaben mit jeweils einer Million Euro.

Das Applikationslabor wird im Rahmen des Fraunhofer-Leitprojekts »QMag«, kurz für Quantenmagnetometrie, errichtet. In dem Projekt entwickeln Forschende von...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: Wie Zellen ihr Skelett bilden

Wissenschaftler erforschen die Entstehung sogenannter Mikrotubuli

Zellen benötigen für viele wichtige Prozesse wie Zellteilung und zelluläre Transportvorgänge strukturgebende Filamente, sogenannte Mikrotubuli.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2020

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker lassen Bor-Atome wandern

17.01.2020 | Biowissenschaften Chemie

Infektiöse Proteine bei Alzheimer

17.01.2020 | Biowissenschaften Chemie

Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

17.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics