Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atome mit dem gewissen Twist

30.05.2016

Gewisse Materialien wie Metalle leiten den Strom, andere, sogenannte Isolatoren wie Glas oder Keramik nicht. Nun ist es Forschern der Universität Hamburg erstmals gelungen, die zentrale Kenngröße einer Klasse ganz neuer Materialien, der sogenannten „topologischen Quantenmaterialien“ zu vermessen. Von diesem speziellen „Twist“, einer trickreichen Verdrehung der Wege der Elektronen, hängen zum Beispiel die Leitfähigkeit und andere Eigenschaften ab. Die Ergebnisse eröffnen ganz neue Perspektiven für die Entwicklung neuer Quantenmaterialien, auch mit potenziellen Anwendungen bei zukünftigen Quantencomputern. Sie wurden nun im Fachmagazin „Science“ veröffentlicht.

In üblichen Materialien müssen sich Elektronen, die für den Stromtransport verantwortlich sind, ihren Weg durch gleichmäßig verteilte Hindernisse im Festkörper bahnen. In den topologischen Quantenmaterialien können sich Teilchen dagegen nur auf gewissen, mehr oder weniger verdrehten Wegen (die einen Twist beinhalten) bewegen und verhalten sich entsprechend den Gesetzen der Quantenphysik zudem wie Teilchen und Wellen gleichzeitig.


Abb. 1: Künstlerische Darstellung der berechneten Geometrie der Eigenstände der zwei Bloch-Bänder.

Copyright: Klaus Sengstock


Darstellung der experimentellen Daten der Tomographie und der Berry-Krümmung.

Copyright: Klaus Sengstock

Es gibt eine zentrale Eigenschaft, die die Topologie, also den Quanten-Twist dieser Materialien, komplett beschreiben kann: die „Berry Krümmung“, benannt nach dem englischen Physiker Michael Berry, der das Grundkonzept dazu bereits in den 1980er Jahren angelegt hat. Das Team um Prof. Dr. Klaus Sengstock und Dr. Christof Weitenberg vom Institut für Laserphysik der Universität Hamburg konnte die Berry Krümmung in einem Quantenmaterial nun erstmalig vollständig vermessen.

Die Physiker nutzten bewusst ein künstliches Quantenmaterial, das heute weltweit intensiv eingesetzt wird: atomare Wolken – sogenannte „ultrakalte Quantengase“ – in einem künstlichen Festkörper, gebildet aus Laserlicht. Nachdem die Atome, die in diesen Experimenten die Rolle von Elektronen in Festkörpern übernahmen, in das künstliche Material, das die zu untersuchende Topologie enthielt, eingebracht worden waren, konnte mithilfe weiterer Laser diese Topologie sehr präzise gemessen werden.

Dr. Weitenberg, der die Experimente betreute, betont: „Wir konnten bereits in diesen ersten Experimenten die Topologie eines künstlichen Materials bestimmen, und das ist erst der Anfang, wir alle sind sehr begeistert von den Möglichkeiten dieser neuen Methode.“

Prof. Sengstock ergänzt: „Neuartige Quantenmaterialien werden schon in naher Zukunft eine wichtige Rolle in den absehbaren Quantentechnologien spielen; Quantencomputer sind dabei besonders visionär und nur durch neue Konzepte zu verwirklichen.“

Materialien mit dem gewissen Twist können vermutlich dazu wichtige Beiträge liefern: „Es ist besonders spannend, in diesem Bereich zu forschen, da das Forschungsfeld dieser neuen Quantenmaterialien erst ganz am Anfang steht, vieles ist noch gar nicht erforscht“, so Prof. Sengstock.

Der Artikel in Science, Vol. 352, Issue 6289, pp. 1091-1094 (2016):

http://science.sciencemag.org/content/352/6289/1091.full

DOI: 10.1126/science.aad4568

Für Rückfragen:

Prof. Dr. Klaus Sengstock
Universität Hamburg
Institut für Laserphysik
Tel.: +49 40 8998-5201
E-Mail: sengstock@physik.uni-hamburg.de

Dr. Christof Weitenberg
Universität Hamburg
Institut für Laserphysik
Tel.: +49 40 8998-5204
E-Mail: cweitenb@physnet.uni-hamburg.de

Birgit Kruse | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Was die Tiefsee über die Sterne verrät
18.12.2018 | Technische Universität Berlin

nachricht Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
17.12.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Bakterien ein Antibiotikum ausschalten

Forscher des HZI und HIPS haben entdeckt, dass resistente Bakterien den Wirkstoff Albicidin mithilfe eines massenhaft gebildeten Proteins einfangen und inaktivieren

Gegen die immer häufiger auftauchenden multiresistenten Keime verlieren gängige Antibiotika zunehmend ihre Wirkung. Viele Bakterien haben natürlicherweise...

Im Focus: How bacteria turn off an antibiotic

Researchers from the HZI and the HIPS discovered that resistant bacteria scavenge and inactivate the agent albicidin using a protein, which they produce in large amounts

Many common antibiotics are increasingly losing their effectiveness against multi-resistant pathogens, which are becoming ever more prevalent. Bacteria use...

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ulmer Forscher beobachten Genomaktivierung "live" im Fischembryo

18.12.2018 | Biowissenschaften Chemie

Notsignal im Zellkern – neuartiger Mechanismus der Zellzykluskontrolle

18.12.2018 | Biowissenschaften Chemie

Neue Methode für sichere Brücken

18.12.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics