Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Astrophysiker klären Entstehung von Komet „Tschuri“ auf

25.10.2017

Daten der Rosetta-Mission bestätigen Modell zur Planetenentstehung

Einer Forschungsgruppe um den Astrophysiker Professor Jürgen Blum von der Technischen Universität Braunschweig ist es gelungen, die Entstehung des Kometen 67/P Tschurjumow-Gerassimenko aufzuklären. Der Vergleich von Daten der Rosetta-Mission mit Modellen zur Planetenentstehung ergeben, dass „Tschuri“ aus millimeter- bis zentimetergroßen Staubklümpchen entstanden ist, die sich nur unter bestimmten Umständen im Weltraum miteinander verbinden. Eigenschaften wie Porosität und Staubaktivität lassen sich zudem durch dieses Entstehungsszenario erklären. Die Ergebnisse wurden nun in der Fachzeitschrift „MNRAS“ veröffentlicht.


Schematische Darstellung der porösen Oberflächenstruktur des Kometen 67P/Tschurjumow-Gerassimenko. Basierend auf verschiedenen Messergebnissen im Rahmen der Rosetta-Mission folgern Blum und Kollegen, dass der Komet 67P (‚Tschuri‘) aus millimetergroßen Staubklümpchen zusammengesetzt ist. Es wird angenommen, dass die Partikel im Inneren des Kometen aus einer Mischung von Staub und Eis bestehen (hellblaue Kugeln im Bild) und nur die obersten Schichten, welche der direkten Sonneneinstrahlung ausgesetzt sind, kein Eis enthalten (dunkelgraue Kugeln). Bildnachweis: TU Braunschweig/Maya Krause

Kometengeburt im Sonnennebel

Die Entstehung unseres Sonnensystems und seiner Planeten besser zu verstehen war eines der großen Ziele der Rosetta-Mission. Für Professor Jürgen Blum und sein Team vom Institut für Geophysik und Extraterrestrische Physik (IGEP) der TU Braunschweig ist nun klar, wie Komet 67/P Tschurjumow-Gerassimenko vor über viereinhalb Milliarden Jahren entstanden ist. „Unsere Ergebnisse zeigen, dass nur ein einziges Modell für die Entstehung größerer fester Körper im jungen Sonnensystem für ‚Tschuri‘ infrage kommt“, erklärt Blum.

Kollabierte Staubklümpchen bilden den Kern

Demnach konzentrieren sich Staubklümpchen durch eine hydrodynamische Instabilität im Sonnennebel so stark, dass ihre gemeinsame Anziehungskraft zu einem gravitativen Kollaps führt. „Was sich dramatisch anhört, ist ein sanfter Vorgang, bei dem die so genannten Agglomerate nicht zerstört werden, sondern sich zu einem größeren Körper mit einer ebenfalls größeren Anziehungskraft verbinden“, erklärt Blum und ergänzt:

„Die Verbindung der Staubagglomerate zu einem eigenständigen Körper ist sozusagen die Geburt des Kometen.“ Die Staubklümpchen bestehen wiederum aus mikroskopisch kleinen Staub- und Eispartikeln, die zuvor über haftende Stöße gewachsen sind. „Damit können nun alle Phasen in diesem Planetenentstehungsmodell belegt werden,“ folgert Professor Blum.

Zur Publikation
Jürgen Blum, Bastian Gundlach, Maya Krause, Marco Fulle, Anders Johansen, Jessica Agarwal, Ingo von Borstel, Xian Shi, Xuanyu Hu, Mark S. Bentley, Fabrizio Capaccioni, Luigi Colangeli, Vincenzo Della Corte, Nicolas Fougere, Simon F. Green, Stavro Ivanovski, Thurid Mannel, Sihane Merouane, Alessandra Migliorini, Alessandra Rotundi, Roland Schmied, Colin Snodgrass; Evidence for the formation of comet 67P/Churyumov-Gerasimenko through gravitational collapse of a bound clump of pebbles, Monthly Notices of the Royal Astronomical Society, stx2741, https://doi.org/10.1093/mnras/stx2741

Bildinformation
Schematische Darstellung der porösen Oberflächenstruktur des Kometen 67P/Tschurjumow-Gerassimenko. Basierend auf verschiedenen Messergebnissen im Rahmen der Rosetta-Mission folgern Blum und Kollegen, dass der Komet 67P (‚Tschuri‘) aus millimetergroßen Staubklümpchen zusammengesetzt ist. Es wird angenommen, dass die Partikel im Inneren des Kometen aus einer Mischung von Staub und Eis bestehen (hellblaue Kugeln im Bild) und nur die obersten Schichten, welche der direkten Sonneneinstrahlung ausgesetzt sind, kein Eis enthalten (dunkelgraue Kugeln). Bildnachweis: TU Braunschweig/Maya Krause

Weitere Informationen:

https://magazin.tu-braunschweig.de/pi-post/astrophysiker-klaeren-entstehung-von-...
https://academic.oup.com/mnras/article/doi/10.1093/mnras/stx2741/4564447/Evidenc...
https://doi.org/10.1093/mnras/stx2741

Stephan Nachtigall | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Anziehungskraft Astrophysiker IGEP KOMET Rosetta-Mission Snodgrass Staub

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics