Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Astrophysik: Tiefer Blick in die Sonne

22.02.2011
Im farbenprächtigen Spektakel der Polarlichter zeigen sie sich von ihrer schönen Seite. Dass sie auch anders können, merkt man, wenn sie Satelliten und ICEs stilllegen: Elektrisch geladene Teilchen, Radiowellen und Röntgenstrahlen, die von der Sonne in den Weltraum geschickt werden und auf die Erde gelangen. Würzburger Astrophysiker nehmen sie in einem neuen Forschungsprojekt genauer unter die Lupe.

Wie eine lose Masche in einem Wollpulli stehen sie bogenförmig auf der Sonnenoberfläche: Protuberanzen. Die Bögen aus sehr dichtem Material können bis zu 50.000 Kilometer hoch werden – und sich manchmal komplett von der Sonne lösen. Dann schießen bis zu zehn Milliarden Tonnen Material mit einer Geschwindigkeit von rund 1.000 Kilometer pro Sekunde in den Weltraum. Treffen Teile von ihnen Minuten oder Stunden später auf die Erde, bleibt das nicht immer ohne Folgen.

„Solche koronalen Massenausbrüche bestehen aus hochenergetischen Teilchen, aus Röntgen- und aus Radiostrahlen“, erklärt Dr. Felix Spanier. Spanier ist Assistent am Lehrstuhl für Astronomie der Universität Würzburg; gemeinsam mit dem Doktoranden Urs Ganse untersucht er die Ausbrüche in einem Forschungsprojekt, das die EU mit rund 150.000 Euro finanziert.

Sonneneruptionen und ihre Folgen

Polarlichter sind die eine, die schöne Seite des Weltraum-Bombardements. Defekte Satelliten, zerstörte Elektrik, Feuer die weniger schöne. So soll eine besonders heftige Eruption 1859 für zahllose Brände in Schweden und den USA verantwortlich gewesen sein. Die elektromagnetischen Effekte in der Atmosphäre hatten in Telegraphenleitungen so starke Ströme in Bewegung gesetzt, dass die Drähte überhitzten.

In heutiger Zeit müssen eher Satellitenbetreiber das so genannte „Weltraumwetter“ fürchten. Mit ihren hohen Energien können die Teilchen und Strahlen Satelliten schachmatt setzen mit gravierenden Folgen beispielsweise für die Telekommunikation oder das Navigationssystem GPS. So störte im Januar 1994 eine Sonneneruption den kanadischen Telekom-Satelliten Anik-E2 fünf Monate lang, was den Betreiber rund 50 Millionen Dollar gekostet haben soll. Und selbst die Elektrik der ersten Generation von ICEs reagierte so empfindlich auf den Strahlenschauer, dass Züge bisweilen liegenblieben.

Was die Würzburger Forscher untersuchen

Warum interessieren sich Astrophysiker für die Sonneneruptionen? Und was gibt es daran über mehrere Jahre hinweg – die EU finanziert das Würzburger Projekt drei Jahre lang – zu erforschen? Tatsache ist: „Die Physik versucht seit mehr als 50 Jahren zu ergründen, welche Prozesse hinter den Massenausbrüchen steckten. Bis heute ohne Erfolg“, sagt Urs Ganse. Das mag überraschen. Immerhin ist die Sonne mit rund 150 Millionen Kilometern aus astronomischer Sicht nicht allzu weit von der Erde entfernt. Und gut zu sehen ist sie auch. Wo also liegen die Probleme?

„Das Problem ist, dass diese Prozesse in einem Plasma ablaufen, das etwa 500.000 Grad heiß ist. Da kann ich nichts beobachten; da kann ich auch keine Sonde reinschicken, und das kann ich auf der Erde nicht nachbauen“, sagt Felix Spanier. Also versuchen Spanier und Ganse das solare Geschehen mit aufwändigen Simulationen im Rechner nachzustellen. Momentan ist Ganse so weit, dass er in seinen mathematischen Modellen zehn Milliarden Teilchen in einem Würfel mit einer Kantenlänge von 50 Metern miteinander in Wechselwirkung treten lassen kann. Die Rechner, die solche Aufgaben bewältigen, stehen in Jülich oder in Finnland und zählen mit 60.000 Prozessoren zu den schnellsten der Welt.

Eine Schwierigkeitsstufe höher erforscht Felix Spanier das Geschehen in der Sonne: „So wie ein Stein in einem Bach für Wirbel sorgt, treten im Plasma Turbulenzen auf, die das übrige Geschehen beeinflussen“, erklärt der Astrophysiker. Diese Abläufe will Spanier aufklären und mit Hilfe von Formeln „so einfach wie möglich beschreiben“.

Probleme und Ziele des Forschungsprojekts

Für ihre Untersuchungen können die beiden Wissenschaftler auf jede Menge Daten zurückgreifen. Zwölf Satelliten beobachten derzeit die Sonne vom Weltraum aus und schicken ihre Messergebnisse in einem beständigen Datenstrom auf die Erde. Teleskope auf der Erde ergänzen deren Arbeit. Trotzdem ist es nicht so einfach, damit Rückschlüsse auf das Geschehen auf der Sonne zu ziehen. „Der Teilchenstrom eines koronalen Massenausbruchs wird beispielsweise im Magnetfeld der Sonne gestreut; die Teilchen ändern dadurch ihre Richtung und ihre Geschwindigkeit. Sie zurückzuverfolgen ist deshalb nicht ganz einfach“, sagt Felix Spanier. Das sei vergleichbar mit einem Tennisball, der gegen eine unebene Wand geworfen wird. Da wisse man auch nie, in welche Richtung er abprallen wird.

Die Vorgänge in der Sonne zu verstehen: Das ist das große Ziel der beiden Wissenschaftler. Auch für die Industrie könnte das Wissen um „fundamentale Plasmaprozesse“ interessant sein. Ob es damit in naher Zukunft auch möglich sein wird, Vorhersagen über Ausbrüche und deren Folgen für die Erde zu machen, ist angesichts der hohen Komplexität fraglich. Trotzdem erwarten Spanier und Ganse Verbesserungen gegenüber dem jetzigen Zustand. „Momentan können wir einen koronalen Massenauswurf beobachten und davon ausgehen, dass die Teilchen etwa 30 Minuten später die Erde erreichen“, sagt Ganse. Das sei gerade genug Zeit, um Satellitenbetreiber zu warnen und Satelliten in den Sicherheitsmodus zu fahren.

Daten auf einem Server sammeln

Neben diesem wissenschaftlichen Ansatz verfolgt die Arbeit der beiden Würzburger Astrophysiker, die Teil eines größeren Projekts mit zwölf europäischen Partnern ist, noch ein zweites, praktisches Ziel. „Wir wollen alle Informationen und Daten, die es über das Geschehen auf der Sonne gibt, auf einem zentralen Server sammeln“, sagt Urs Ganse. Bisher seien diese über die ganze Welt zerstreut und für Wissenschaftler nicht immer leicht zu bekommen. Mit der Konsequenz, dass „bestimmte Events sehr gut untersucht sind, einfach weil die Daten gut zugänglich sind, andere Ereignisse hingegen so gut wie gar nicht“, sagt Ganse.

Kontakt

Dr. Felix Spanier, Lehrstuhl für Astronomie, T: (0931) 31-84932, E-Mail: fspanier@astro.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erste Beweise für Quelle extragalaktischer Teilchen
13.07.2018 | Technische Universität München

nachricht MAGIC-Teleskope finden Entstehungsort von seltenem kosmischen Neutrino
13.07.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungsnachrichten

Maschinelles Lernen: Neue Methode ermöglicht genaue Extrapolation

13.07.2018 | Informationstechnologie

Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung

13.07.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics