Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Astrophysik - Galaktisches Schwergewicht

03.12.2019

Schwarzes Loch mit 40 Milliarden Sonnenmassen entdeckt: Im Zentrum des Galaxienhaufes “Abell 85” befindet sich das größte schwarze Loch im nahen Universum – es ist wahrscheinlich das Ergebnis einer Kette von Verschmelzungen kleinerer schwarzer Löcher.

Eine Analyse der Geschwindigkeiten von Millionen von Sternen in der zentralen Galaxie des „Abell 85“-Galaxienhaufens hat zu der Entdeckung eines extrem massereichen Schwarzen Lochs im Zentrum der Galaxie geführt – es ist 40 Milliarden Mal schwerer als unsere Sonne.


Bild des Abell 85-Galaxienhaufens, aufgenommen am USM Wendelstein Observatorium der LMU. Die zentrale, helle Galaxie Holm15A (grüner Pfeil) hat einen ausgedehnten diffusen Kern. Das zentrale Schwarze Loch dieser Galaxie ist 40 Milliarden Mal massereicher als unsere Sonne. Foto: MPE/Universitäts-Sternwarte München

Astronomen an der Universitätssternwarte München (USM) und am Max-Planck-Institut für extraterrestrische Physik (MPE) analysierten hierfür neue photometrische Daten des Wendelstein Observatoriums sowie neue hochauflösende, spektrale Beobachtungen mit MUSE-Instrument am Very Large Telescope (VLT). Es ist das massereichste Schwarze Loch, das jemals direkt aufgrund der Bewegung von Sternen bestimmt wurde.

Obwohl allein die Sterne in der Zentralgalaxie des Galaxienhaufens Abell 85 zusammengenommen die enorme Masse von mehr als zwei Billionen (1012) Sonnenmassen haben (eine der größten Sternenansammlungen überhaupt), ist das Zentrum der Galaxie extrem diffus und lichtschwach.

Ein gemeinsames Team von Astronomen der Universitäts-Sternwarte München (USM) und des Max-Planck-Instituts für extraterrestrische Physik wollte deshalb einen genaueren Blick auf diese Galaxie werfen. Die zentrale diffuse Region der Galaxie hat eine enorme Ausdehnung, vergleichbar mit der der Großen Magellanschen Wolke; dies brachte die Wissenschaftler auf die Idee, dass sich hier ein schwarzes Loch mit einer ungewöhnlich großen Masse verbirgt.

Der Galaxienhaufen Abell 85, der aus mehr als 500 einzelnen Galaxien besteht, befindet sich in einer Entfernung von 700 Millionen Lichtjahren von der Erde und ist damit doppelt so weit entfernt wie irgendeine andere Galaxie, in der bis jetzt die Masse eines Schwarzen Lochs direkt gemessen wurde.

„Es gibt nur wenige Dutzend direkte Massenbestimmungen supermassereicher Schwarzer Löcher – und noch nie zuvor ist es in einer solch großen Entfernung gelungen“, erklärt Jens Thomas, der die Studie leitete. „Aber wir hatten bereits eine Ahnung von der Größe des Schwarzen Lochs in dieser speziellen Galaxie, also haben wir es probiert.“

Die neuen Daten, die am USM Wendelstein-Observatorium der LMU und mit dem MUSE-Instrument am VLT gewonnen wurden, ermöglichten es dem Team, eine Massenabschätzung durchzuführen, die direkt auf den kollektiven Bewegungen der Sterne um den Kern der Galaxie basiert. Mit einer Masse von 40 Milliarden Sonnenmassen ist dies das massereichste Schwarze Loch, das derzeit im lokalen Universum bekannt ist. „Es ist um ein Vielfaches größer, als man es aufgrund indirekter Messungen, wie der Sternmasse oder der Geschwindigkeitsdispersion der Galaxie, erwarten würde“, sagt Roberto Saglia, Co-Autor der Studie.

Die Messungen der Galaxie zeigen ein extrem lichtschwaches Zentrum mit nur noch sehr wenigen Sternen – dies ist zwar ähnlich wie in manchen anderen elliptischen Galaxien, aber sehr viel stärker ausgeprägt. „Das Lichtprofil im inneren Kern nimmt zum Zentrum hin auch nicht mehr zu“, erklärt USM-Doktorand Kianusch Mehrgan, der die Datenanalyse durchführte. „Das bedeutet, dass die meisten Sterne aufgrund von Interaktionen bei vorangegangenen Verschmelzungen von schwarzen Löchern aus dem Zentrum geschleudert worden sein müssen.“

Nach gängiger Auffassung entstehen diese diffusen Kerne in den größten elliptischen Galaxien, weil die Sterne aus dem Zentrum „herausgefegt“ werden. Bei der Verschmelzung von zwei Galaxien bilden deren schwarze Löcher zunächst ein Paar, bevor sie schließlich auch verschmelzen. Sterne auf Flugbahnen, die in die Nähe der beiden schwarzen Löcher führen, werden durch gravitative Wechselwirkungen aus dem Zentrum der Restgalaxie herausgeschleudert. Ist im Zentrum der Galaxie kein Gas mehr vorhanden, um neue Sterne zu bilden (wie das in jüngeren Galaxien der Fall wäre), führt dies dazu, dass der Kern immer diffuser und ärmer an Sternen wird.

„Die neueste Generation von Computersimulationen der Verschmelzung von Galaxien lieferte uns Vorhersagen, die tatsächlich gut zu den beobachteten Eigenschaften passen“, sagt Jens Thomas, der auch die dynamischen Modelle beisteuerte. „Diese Simulationen beinhalten die Wechselwirkungen zwischen Sternen und einem Schwarzen-Loch-Paar; die wesentliche Komponente sind aber zwei elliptische Galaxien, die bereits diffuse Kerne haben. Die Form des Lichtprofils und die Flugbahnen der Sterne sind sehr wertvolle archäologische Informationen und verraten uns, wie sich der Kern in dieser Galaxie gebildet hat – dies lässt sich auch auf andere sehr massereiche Galaxien übertragen.“

Selbst vor dem Hintergrund dieser ungewöhnlichen Entstehungsgeschichte in einer Kette von Verschmelzungen konnten die Wissenschaftler eine neue und robuste Beziehung zwischen der Masse des zentralen Schwarzen Lochs und der Oberflächenhelligkeit der Galaxie herstellen:

Mit jeder Verschmelzung gewinnt das Schwarze Loch an Masse, während das Galaxienzentrum Sterne verliert. Astronomen könnten diese Beziehung für Massenabschätzungen von Schwarzen Löchern in noch entfernteren Galaxien nutzen, bei denen direkte Messungen der Bewegung der Sterne nahe am Schwarzen Loch nicht möglich sind.

Wissenschaftliche Ansprechpartner:

Jens Thomas
MPI für Extraterrestrische Physik / Universitäts-Sternwarte München
Tel: +49 (0)89 30000-3714
E-Mail: jthomas@mpe.mpg.de

Roberto Saglia
MPI für Extraterrestrische Physik / Universitäts-Sternwarte München
Tel: +49 (0)89 30000- 3916
E-Mail: saglia@mpe.mpg.de

Originalpublikation:

A 40-billion solar mass black hole in the extreme core of Holm 15A, the central galaxy of Abell 85
K. Mehrgan, J. Thomas, R. Saglia et al.
Accepted for publication by ApJ

LMU Stabsstelle Kommunikation und Presse | Ludwig-Maximilians-Universität München
Weitere Informationen:
https://www.uni-muenchen.de/forschung/news/2019/thomas_schwarzes_loch.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger Rauschen im Quantennetz
29.11.2019 | Österreichische Akademie der Wissenschaften

nachricht Der Nachbar schwingt mit
29.11.2019 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Meteoritengestein ist "bessere Diät"

Archaeon kann Meteoritengestein aufnehmen – und sich davon ernähren

Das Archaeon Metallosphaera sedula kann außerirdisches Material aufnehmen und verarbeiten. Das zeigt ein internationales Team um Astrobiologin Tetyana...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: Kleiner, schneller, energieeffizienter – leistungsstarke Bauelemente für den digitalen Wandel

Hocheffiziente Leistungshalbleiter sollen die Voraussetzungen für vielfältige neue Anwendungen schaffen – von der Elektromobilität bis hin zur künstlichen Intelligenz. Darauf zielt das kürzlich gestartete Verbundprojekt „Leistungstransistoren auf Basis von AlN (ForMikro-LeitBAN)“, das vom Ferdinand-Braun-Institut koordiniert wird.

Smarte Energieversorgung, Elektromobilität, breitbandige Kommunikationssysteme und Anwendungen der künstlichen Intelligenz (KI) – die Anzahl miteinander...

Im Focus: KATRIN-Experiment begrenzt die Masse von Neutrinos auf unter 1 Elektronenvolt

Neutrinos spielen durch ihre kleine, aber von Null verschiedene Masse eine Schlüsselrolle in Kosmologie und Teilchenphysik. Seit 2018 soll mit dem KArlsruher TRitium Neutrino Experiment (KATRIN) die Masse von Neutrinos bestimmt werden. Schon nach einer ersten kurzen Neutrino-Messphase konnten die Forscherinnen und Forscher die Masse des Neutrinos auf kleiner als 1 Elektronenvolt (eV) begrenzen, was doppelt so genau ist wie alle bisher durchgeführten teils mehrjährigen Laborexperimente. Das Ergebnis ist diese Woche als Titelgeschichte des renommierten Fachjournals „Physical Review Letters“ veröffentlicht worden. Am Experiment beteiligt ist auch ein Team der Bergischen Universität Wuppertal.

Neben den Photonen, den masselosen elementaren Quanten des Lichts, sind Neutrinos die häufigsten Teilchen im Universum. Neutrinos werden „Geisterteilchen“...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intelligente Transportbehälter als Basis für neue Services der Intralogistik

03.12.2019 | Veranstaltungen

Weltkorallenriffkonferenz ICRS 2020 lädt zum Fotowettbewerb ein

02.12.2019 | Veranstaltungen

Digital Innovation – von AI bis UX

25.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Meteoritengestein ist "bessere Diät"

03.12.2019 | Geowissenschaften

Astrophysik - Galaktisches Schwergewicht

03.12.2019 | Physik Astronomie

Deep Learning erkennt molekulare Muster von Krebs

03.12.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics