Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

AstronomInnen entdecken Radio "Jupiter"

27.08.2012
"PIRATENSENDER" AUF JUPITER - RADIOSTRAHLUNG BIRGT ÜBERRASCHUNG

Die Entdeckung einer neuen Radiostrahlung des Jupiters zählt zu den Highlights eines dreijährigen Projekts des Wissenschaftsfonds FWF. In diesem wurde eigentlich die planetare Radiostrahlung der Erde und des Saturns untersucht - und eine eigenartige Radiostrahlung des Jupiters entdeckt.

Weitere Ergebnisse des jetzt beendeten Projekts umfassten die Identifikation einer neuen Modulation der Radiostrahlung der Erde sowie die Analyse spezieller Komponenten der Radiostrahlung des Saturns. In einer abschließenden Evaluation wurde das Projekt von externen GutachterInnen hervorragend bewertet.

Die Erde ist laut. Radiolaut. So werden in der Astronomie Objekte bezeichnet, die eine messbare Radiostrahlung verursachen. Dazu gehört eben auch die Erde, deren Magnetfeld geladene Teilchen (Elektronen, Protonen, Ionen) beeinflusst und so Radiostrahlung verursacht. Doch auch andere Planeten wie der Saturn oder der Jupiter verursachen eine solche Strahlung. Ihre Messung erlaubt Rückschlüsse auf planetare Magnetfelder. Genau diese waren das Ziel eines Projekts des Wissenschaftsfonds FWF, das am Institut für Weltraumforschung der Österreichischen Akademie der Wissenschaften (IWF) in Graz durchgeführt wurde.

TUNED IN

Gemeinsam mit KollegInnen aus den USA und Frankreich wollte das Team um Prof. Helmut O. Rucker, Stellvertretender und Wissenschaftlicher Direktor des IWF, spezielle Radiostrahlung der Erde und des Saturns analysieren. Mithilfe von Radiodaten der NASA-Raumsonden "Stereo-A" und "Stereo-B" gelang ihnen das auch - doch zuvor funkte ihnen ein "Störsender" in die Arbeit. Dazu Prof. Rucker: "Im Zuge der Auswertung entdeckte mein Kollege Dr. Mykhaylo Panchenko eine eigenartige Radiostrahlung, die vom Jupiter ausging - also eigentlich gar nicht Teil unseres Projekts gewesen wäre. Dass diese Strahlung aber trotz fünfzigjähriger Beobachtung der Jupiterradiostrahlung unentdeckt geblieben war, war für uns Anlass, ihr auf den Grund zu gehen."

Auffällig an der Strahlung im Dekameterbereich (Wellenlänge von ca. 10 Metern) war vor allem ihre Periodizität, also der Wechsel ihrer Intensität. Bisher waren für die Dekameterstrahlung des Jupiters zwei Perioden bekannt: eine, die sich durch die Rotation des Jupiters ergibt und 9 Stunden, 55 Minuten und 29,7 Sekunden umfasst (System III), sowie eine weitere, die auf den Einfluss des Jupiter-Monds Io auf das Magnetfeld zurückzuführen ist (42,46 Stunden). Mit einer Periodizität von etwa 10,07 Stunden lag die neu entdeckte Komponente der Radiostrahlung aber ca. 1,5 Prozent über der, die sich durch die Rotation des Jupiters ergibt. Dazu Dr. Panchenko: "Unsere weiteren Analysen legten die Vermutung nahe, dass die Quelle dieser neuen Radiokomponente gemeinsam mit Jupiter rotiert. Wir vermuten, dass der Strahlungsursprung in der Nähe des sogenannten Plasmatorus des Jupitermondes Io liegt." Dieser ist ein ringförmiger Bereich um den Jupiter, der auf Höhe der Bahnebene des Mondes Io liegt und durch vulkanisches Material des Mondes gebildet wird, das mit dem Magnetfeld des Jupiters in Wechselwirkung steht. Diese These zur Quelle und Fragen zur Erzeugung der Radio-Impulse müssen nun in zukünftigen Projekten geklärt werden.

PROJEKTE & PRODUKTE

Für das FWF-Projekt stellte die in Geophysical Research Letters veröffentlichte Arbeit zur Entdeckung der Radiostrahlung ein unerwartetes "Nebenprodukt" dar. Doch auch zu den eigentlich geplanten Arbeiten über die Radiostrahlung der Erde und des Saturns gelangen wichtige Fortschritte. So konnte durch die Analyse der Stereo-A- und -B-Daten eine deutliche tägliche Modulation für die Aurorale Kilometerwellenlängen-Radiostrahlung der Erde festgestellt werden. Weiters gelang eine "Inflight"-Kalibration des Stereo-Antennensystems auf Grundlage spezieller mathematischer Ansätze. Damit wurde eine exakte Charakterisierung des Empfangsverhaltens dieses Systems ermöglicht. Zusätzlich wurden für die Saturn-Kilometerwellenlängen-Radiostrahlung genaue Analysen zu deren Modulation durchgeführt.

Zur Erweiterung des Projekts meint Prof. Rucker: "Grundlagenforschung lebt vom Unerwarteten. Dank der Flexibilität des FWF war es uns möglich, einer wissenschaftlichen Überraschung mit solider Datenanalyse zu begegnen." Eine Tatsache, die auch die internationalen EvaluatorInnen des Projekts mit ausgezeichneten Bewertungen im Abschlussbericht würdigten.

Originalpublikation: New periodicity in Jovian decametric radio emission, M. Panchenko, H. O. Rucker, M. L. Kaiser, O. C. St. Cyr, J. L. Bougeret, K. Goetz und S. D. Bale. Geophysical Research Letters, VOL. 37, L05106, doi:10.1029/2010GL042488, 2010

Bild und Text ab Montag, 27. August 2012, ab 09.00 Uhr MEZ verfügbar unter:
http://www.fwf.ac.at/de/public_relations/press/pv201208-de.html
Wissenschaftlicher Kontakt:
Prof. Helmut O. Rucker
Institut für Weltraumforschung der Österreichischen Akademie der Wissenschaften Schmiedlstraße 6
8042 Graz
T +43 / (0)316 / 4120 - 601
E helmut.rucker@oeaw.ac.at
Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Redaktion & Aussendung:
PR&D - Public Relations für Forschung & Bildung Mariannengasse 8
1090 Wien
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Margot Pechtigam | PR&D
Weitere Informationen:
http://www.fwf.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lichtpulse bewegen Spins von Atom zu Atom
17.02.2020 | Forschungsverbund Berlin e.V.

nachricht Physik des Lebens - Die Logistik des Molekül-Puzzles
17.02.2020 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics