Alternde Doppelsterne umkreisen sich und gestalten spektakulären planetarischen Nebel

Der planetarische Nebel „Fleming 1“ mit seinen s-förmig gebogenen (rötlichen) Massenabströmungen (so genannte Jets), für die das aufgefundene Doppel-Zentralgestirn verantwortlich ist<br>ESO, (Bild aus Originalarbeit)<br>

Ein internationales Team von Astronomen hat ein Sternenpaar entdeckt, das sich gegenseitig im Zentrum eines der bemerkenswertesten planetarischen Nebel umkreist. Mit den neuen Beobachtungen lässt sich eine lange diskutierte Theorie bestätigen. Sie beschreibt die spektakuläre und symmetrische Erscheinung von Materie, die von Doppelsternen ins All geschleudert wird. Diese Ergebnisse werden in der Ausgabe vom 09.11.2012 der Zeitschrift Science erscheinen.

Planetarische Nebel sind leuchtende Gashüllen um weiße Zwerge – sonnenähnliche Sterne in den Endstadien ihrer Entwicklung. „Fleming 1“ ist ein schönes Beispiel für einen Nebel, der auffallend symmetrische, gebündelte Massenabströmungen (so genannte Jets) zeigt, die knotenartige, gekrümmte Muster erzeugen. Das Objekt befindet sich im Sternbild des Zentauren am Südhimmel und wurde vor etwas mehr als einem Jahrhundert von Williamina Fleming entdeckt, einer ehemaligen Hausangestellten, die später vom Harvard College Observatorium (USA) angestellt wurde, nachdem ihre Begabung für die Astronomie erkannt wurde.

Unter Astronomen wurde seit langem kontrovers diskutiert, wie diese symmetrischen Jets entstehen könnten. Nun hat ein Forscherteam unter Leitung von Henri Boffin (ESO, Chile) neue Beobachtungen am Very Large Telescope der Europäischen Südsternwarte (ESO) in Chile durchgeführt und mit neuen Tübinger Computermodellen von Dr. Thomas Rauch ausgewertet. Die Astronomen können damit erstmals erklären, wie diese bizarren Formen entstehen konnten. Bei der spektroskopischen Untersuchung des Zentralsterns fanden sie heraus, dass es sich um ein enges Doppelsternsystem handelt, bestehend aus zwei weißen Zwergen, die sich gegenseitig in nur 1,2 Tagen umkreisen. Solche Systeme sind außerordentlich selten.

Die nun veröffentlichte Studie zeigt, dass die beobachteten Muster im Nebel „Fleming 1“ das Er-gebnis einer engen Wechselwirkung dieses Doppelsternsystems ist – der auffällige „Schwanenge-sang“ eines Sternpaars. Diese Arbeit stellt den bisher umfassendsten Fall eines Doppel-Zentralsterns dar, für den Simulationen korrekt vorhergesagt haben, wie es den umgebenden Nebel formt.

Als die beiden Sterne alterten, dehnten sie sich aus. Zeitweise agierte der eine Stern als „Vampir“, der Materie von seinem Begleiter absaugt. Dieses Material strömte in Richtung „Vampir“ und um-kreiste ihn in Form einer so genannten Akkretionsscheibe. Während die beiden Sterne umeinander kreisten, wechselwirkten sie mit der Scheibe und brachten sie zum Taumeln, ähnlich wie ein tau-melnder Kreisel – eine Bewegung, die als Präzession bezeichnet wird. Diese Bewegung bestimmte das Verhalten jeglicher Materie, das von den Polen dieses Systems nach außen weggedrückt wur-de, so wie die herausströmenden Jets. Die neue Studie bestätigt nun, dass präzedierende Akkreti-onsscheiben in Doppelsternsystemen die auffällig symmetrischen Formen um den planetarischen Nebel „Fleming 1“ hervorgerufen haben.

Kontakt:

Dr. Thomas Rauch (ab 9.11.)
Prof. Dr. Klaus Werner
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Astronomie und Astrophysik/Kepler Center for Astro and Particle Physics
Tel. +49 7071 29-78601
Rauch[at]astro.uni-tuebingen.de, Werner[at]astro.uni-tuebingen.de

Media Contact

Michael Seifert idw

Weitere Informationen:

http://www.astro.uni-tuebingen.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer