Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ALMA entdeckt überraschende Spiralstrukturen um einen sterbenden Stern

11.10.2012
Pressemitteilung der Europäischen Südsternwarte (Garching) - Astronomen haben mit dem Atacama Large Millimeter/submillimeter Array (ALMA)eine Spiralstruktur in einer äußeren Hülle entdeckt, die den sterbenden Riesenstern R Sculptoris umgibt.

Die überraschende Beobachtung in Kombination mit dem Nachweis der weiter außen liegenden Hülle um einen roten Riesenstern ist eine astronomische Premiere. Die Spiralstruktur dürfte auf einen unsichtbaren Begleiter zurückgehen, der den Roten Riesen umkreist. Die neuen Ergebnisse erscheint diese Woche in der Fachzeitschrift Nature – als eine der ersten Veröffentlichungen aus der frühen Phase wissenschaftlicher Beobachtungen mit ALMA.


ALMA beobachtet eine seltsame Spirale um den roten Riesenstern R Sculptoris
Bild: ALMA (ESO/NAOJ/NRAO)

Ein Astronomenteam hat zu seiner Überraschung eine Spiralstruktur in dem Gas um den roten Riesenstern R Sculptoris entdeckt [1][2][3], die darauf hin deutet, dass ein zuvor unentdeckter Begleiter den Stern umkreist [4]. Auch die Menge des von dem Roten Riesen ausgestoßenen Materials erwies sich als deutlich größer als erwartet ausgestoßen. Die Beobachtungen wurden mit dem Atacama Large Millimeter/submillimeter Array (ALMA) vorgenommen, dem leistungsfähigsten Millimeter/Submillimeter-Teleskop der Welt.

„Zwar konnten zuvor bereits Schalen aus ausgestoßenem Material um diese Art von Sternen beobachtet werden, aber wir sind die ersten, die so eine Spirale aus Materie beobachtet haben, die von dem Stern ausgeht und die von einer noch deutlich größeren Hülle umgeben ist”, erklärt Matthias Maercker von der ESO und vom Argelander-Institut für Astronomie der Universität Bonn, der Erstautor der Studie, in der die Ergebnisse veröffentlicht werden.

Rote Riesensterne wie R Sculptoris geben große Mengen an Materie in den umgebenden Weltraum ab. Sie sind damit die Hauptlieferanten des Gases und des Staubs, die den Großteil des Rohmaterials für die Bildung von Planetensystemen um neue Generationen von Sternen, und damit auch für das Leben darstellt

Das Ergebnis stammt aus der Frühphase wissenschaftlicher Beobachtungen mit ALMA („Early Science phase“). Doch selbst in dieser Frühphase übertrifft die Leistung der Anlage deutlich die anderer Submillimeterobservatorien. Zuvor gewonnene Datensätze zeigten zwar eine kugelförmige Hülle um R Sculptoris, aber weder die Spiralstruktur noch Hinweise auf einen Begleiter.

„Während unserer Beobachtungen mit ALMA beobachtet haben, waren noch nicht mal die Hälfte der vorgesehenen Antennen vor Ort. Man stelle sich vor, was ALMA leisten können wird, wenn die Anlage ab 2013 komplett aufgebaut ist!" ergänzt Wouter Vlemmings von der Chalmers University of Technology in Schweden, einer der Ko-Autoren der Studie.

Kurz vor dem Ende ihres Lebens werden Sterne mit einer Masse von bis zu acht Sonnenmassen zu Roten Riesen und verlieren dann einen Großteil ihrer Masse in Form von starken Sternwinden. Während der Rote-Riesen-Phase finden außerdem zusätzlich regelmäßig sogenannte thermische Pulse statt: kurze, explosive Phasen, während derer in einer Hülle um den Zentralbereich des Sterns Heliumkerne zu Kohlenstoffkernen verschmelzen. Während jedes thermischen Pulses erhöht sich die Rate, mit der Materie von der Sternoberfläche in den umgebenden Raum strömt. So entstehen um den Stern herum ausgedehnte Hüllen aus Gas und Staub. Nach dem Puls geht die Massenverlustrate auf ihren normalen Wert zurück.

Thermische Pulse treten etwa alle 10.000 bis 50.000 Jahre auf und dauern jeweils nur wenige hundert Jahre. Die neuen Beobachtungen von R Sculptoris zeigen, dass der Stern vor gut 1800 Jahren seinen letzten thermischen Puls erlebte, der etwa 200 Jahre währte. Der Begleitstern brachte den Sternwind von R Sculptoris dann in die jetzt beobachtete Spiralform.

„Dadurch, dass ALMA in der Lage ist, derart feine Details aufzulösen, können wir viel besser als zuvor nachvollziehen, was mit dem Stern vor, während und nach dem thermischen Puls passiert ist. Die Form der Hülle und der Spiralstruktur liefern uns die dafür nötigen Informationen”, ergänzt Maercker. “Wir haben zwar durchaus damit gerechnet, dass ALMA uns einen ganz neuen Blick auf das Universum ermöglichen wird. Aber dass wir bereits mit einer der ersten Beobachtungen überhaupt völlig unerwartete neue Dinge zu Gesicht bekommen, ist schon etwas ganz besonderes.”

Um die Entstehung der beobachteten Strukturen rund um R Sculptoris nachvollziehen zu können, hat das Astronomenteam Computersimulationen durchgeführt, die die Entwicklung eines Doppelsternsystems modellieren [5]. Die resultierenden Modelle passen erstaunlich gut zu den neuen ALMA-Daten.

"Es ist eine beachtliche Herausforderung, all die Details, die ALMA liefert, auch theoretisch beschreiben zu können. Aber mit unseren Computermodellen sind wir auf dem richtigen Weg. ALMA hat uns einen hervorragenden Einblick geliefert, wie sich diese Sterne verhalten – und damit auch, wie sich unsere Sonne in ein paar Milliarden Jahren entwickeln könnte", erläutert Shazrene Mohamed vom Argelander-Institut für Astronomie in Bonn und vom South African Astronomical Observatory in Südafrika, eine Ko-Autorin der Studie.

„Bald können uns ALMA-Beobachtungen von Sternen wie R Sculptoris dabei helfen nachzuvollziehen, wie die chemischen Elemente, aus denen wir Menschen bestehen, auf einen Planeten wie die Erde gelangt sind. Und auch über die ferne Zukunft unseres eigenen Heimatsterns dürfte uns ALMA einiges verraten”, schließt Matthias Maercker.

Endnoten

[1] R Sculptoris ist ein Beispiel für einen Stern auf dem sogenannten asymptotischen Riesenast (englisch asymptotic giant branch, kurz AGB). Solche Sterne haben ursprünglich Massen zwischen 0,8 und 8 Sonnenmassen, befinden sich mittlerweile aber im letzten Stadium ihres Sternlebens. Es handelt sich um kühle rote Riesensterne, die in Form von heftigen Sternwinden fortwährend beträchtliche Mengen an Materie verlieren. Üblicherweise ist die Helligkeit solcher Sterne langperiodisch veränderlich. Die Sterne enthalten einen vergleichsweise kleinen Zentralbereich aus Kohlenstoff und Sauerstoff, der von Schalen umgeben ist, in denen zum einen Wasserstoff, zum anderen Heliumkerne miteinander verschmelzen. Außen schließt sich an diese Schalen eine riesige, ausgedehnte Hülle an, in denen die Materie durch Konvektion durchmischt wird. Auch die Sonne wird sich einmal zu einem solchen AGB-Stern entwickeln.

[2] Die ausgestoßene Hülle um AGB-Sterne besteht aus Gas und aus Staubkörnern. Der Staub kann aussfindig gemacht werden, indem man im fernen Infrarot oder bei Millimeter- und Submillimeterwellenlängen nach der Wärmestrahlung sucht, die er abgibt. Die vom CO-Molekül ausgesendete Strahlung im Millimeterwellenlängenbereich ermöglicht es den Astronomen, hochaufgelöste Karten des Gases zu erstellen, das durch den starken Sternwind der AGB-Sterne nach außen gerissen wird. Derartige Beobachtungen sind also hervorragend geeignet, um die Verteilung des Gases rund um diese Objekte zu ermitteln. Dank der hohen Empfindlichkeit von ALMA ist es möglich, den Bereich, in dem der Staub auskondensiert, sowie ganz allgemein die räumliche Struktur des Materials in der Umgebung der AGB-Sterne mit einer Auflösung von besser als 0,1 Bogensekunden direkt abzubilden.

[3] Eine ähnliche Spirale, allerdings ohne ohne die umgebende Hülle, konnte bereits mit dem NASA/ESA Hubble-Weltraumteleskop um den Stern LL Pegasi beobachtet werden. Anders als bei den neuen ALMA-Beobachtungen konnte aus diesen Daten allerdings nicht die gesamte Struktur dreidimensional untersucht werden. Außerdem weisen die Hubble-Daten den Staub und nicht wie ALMA die Molekülemission nach.

[4] Nicht direkt nachgewiesene Begleiter eignen sich ebenfalls, um die seltsamen Formen noch weiter entwickelter Objekte zu erklären: der planetarischen Nebel. Nach der AGB-Phase beenden Sterne mit kleinen und mittleren Massen (von ca. 0,8 bis 8 Sonnenmassen) ihr Leben als eben solche. Es handelt sich dabei um die Überreste der Gashülle, die während der AGB-Phase ausgestoßen wurde und die nun von der Ultraviolettstrahlung des zentralen Weißen Zwerges, dem Überrest des Zentralbereichs des ehemaligen Sterns, ionisiert und zum Leuchten angeregt werden. Viele planetarische Nebel haben sehr komplexe und zudem völlig unterschiedliche Morphologien. Doppelsternsysteme, Scheibensysteme oder Magnetfelder sind mögliche Erklärungen, um die beobachtete Formenvielfalt planetarischer Nebel zu erklären.

[5] Das Modellsternsystem besteht aus dem AGB-Stern, der einen thermischen Puls durchläuft, als Hauptkomponente und einem kleineren Begleitstern. Der Abstand zwischen den beiden Sternen betrug in der Simulation das 60-fache des Abstands Erde-Sonne, die Gesamtmasse des Systems zwei Sonnenmassen. Die Umlaufdauer beträgt unter diesen Umständen 350 Jahre.

Zusatzinformationen

Die hier vorgestellten Forschungsergebnisse von Matthias Maercker et al. erscheinen demnächst unter dem Titel “Unexpectedly large mass loss during the thermal pulse cycle of the red giant star R Sculptoris” in der Fachzeitschrift Nature.

Die beteiligten Wissenschaftler sind M. Maercker (ESO und Argelander-Institut für Astronomie der Universität Bonn), S. Mohamed (Argelander-Institut für Astronomie und South African Astronomical Observatory, Südafrika), W. H. T. Vlemmings (Onsala Space Observatory, Chalmers University of Technology, Onsala, Schweden), S. Ramstedt (Argelander-Institut für Astronomie), M. A. T. Groenewegen (Royal Observatory of Belgium, Brüssel, Belgien), E. Humphreys (ESO), F. Kerschbaum (Institut für Astronomie der Universität Wien, Österreich), M. Lindqvist (Onsala Space Observatory), H. Olofsson (Onsala Space Observatory), C. Paladini (Institut für Astronomie der Universität Wien), M. Wittkowski (ESO), I. de Gregorio-Monsalvo (Joint ALMA Observatory, Chile) und L. A. Nyman (Joint ALMA Observatory).

Im Jahr 2012 feiert die Europäische Südsternwarte ESO (European Southern Observatory) das 50-jährige Jubiläum ihrer Gründung. Die ESO ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop mit 39 Metern Durchmesser für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird: das European Extremely Large Telescope (E-ELT).

Das Atacama Large Millimeter/submillimeter Array (ALMA) ist eine internationale astronomische Einrichtung, die gemeinsam von Europa, Nordamerika und Ostasien in Zusammenarbeit mit der Republik Chile getragen wird. Von europäischer Seite aus wird ALMA über die Europäische Südsternwarte (ESO) finanziert, in Nordamerika von der National Science Foundation (NSF) der USA in Zusammenarbeit mit dem kanadischen National Research Council (NRC) und dem taiwanesischen National Science Council (NSC), und in Ostasien von den japanischen National Institutes of Natural Sciences (NINS) in Kooperation mit der Academia Sinica (AS) in Taiwan. Bei Entwicklung, Aufbau und Betrieb ist die ESO federführend für den europäischen Beitrag, das National Radio Astronomy Observatory (NRAO), das seinerseits von Associated Universities, Inc. (AUI) betrieben wird, für den nordamerikanischen Beitrag und das National Astronomical Observatory of Japan für den ostasiatischen Beitrag. Dem Joint ALMA Observatory (JAO) obliegt die übergreifende Projektleitung für den Aufbau, die Inbetriebnahme und den Beobachtungsbetrieb von ALMA.

Das ALMA-Observatorium wird am 13. März 2013 offiziell eingeweiht werden.

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org
Matthias Maercker
ESO ALMA Cofund Fellow
Argelander Institute for Astronomy, University of Bonn, Germany
Tel: +49 228 735768
Handy: +49 176 706 21 632
E-Mail: maercker@astro.uni-bonn.de
Wouter Vlemmings
Onsala Space Observatory
Chalmers University of Technology, Sweden
Tel: +46 31 772 5509
Handy: +46 733 544 667
E-Mail: wouter.vlemmings@chalmers.se
Shazrene S. Mohamed
Postdoctoral Research Fellow
South African Astronomical Observatory, Cape Town, South Africa
Tel: +27 21 447 0025 ext 7025
Handy: +27 729 661 707
E-Mail: shazrene@saao.ac.za
Douglas Pierce-Price
Public Information Officer, ESO
Garching bei München, Germany
Tel: +49 89 3200 6759
E-Mail: dpiercep@eso.org

Carolin Liefke | ESO Science Outreach Network
Weitere Informationen:
http://www.eso.org

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf die Nähe kommt es an: Wie Kristall den Widerstand von Graphen beeinflusst
29.01.2020 | Georg-August-Universität Göttingen

nachricht Wie man ein Bild von einem Lichtpuls macht
27.01.2020 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Struktur und Funktion von Lichtrezeptor bei Cyanobakterien aufgeklärt

Chemie: Veröffentlichung in PNAS

Bestimmte Proteine dienen Pflanzen und auch Cyanobakterien als Lichtrezeptoren. Das Team des Center for Structural Studies (CSS) der Heinrich-Heine-Universität...

Im Focus: Protein pores packed in polymers make super-efficient filtration membranes

A multidisciplinary team of engineers and scientists has developed a new class of filtration membranes for a variety of applications, from water purification to small-molecule separations to contaminant-removal processes, that are faster to produce and higher performing than current technology. This could reduce energy consumption, operational costs and production time in industrial separations.

Led by Manish Kumar, associate professor in the Cockrell School of Engineering at The University of Texas at Austin, the research team describes their new...

Im Focus: Schnellster hochpräziser 3D-Drucker

3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Viele Anwendungen benötigen jedoch einen präzisen Druck im Mikrometermaßstab und eine deutlich höhere Druckgeschwindigkeit. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. Dieses System präsentieren sie in einem Sonderband der Zeitschrift Advanced Functional Materials. (DOI: 10.1002/adfm.201907795).

Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter...

Im Focus: Wie man ein Bild von einem Lichtpuls macht

Um die Form von Lichtpulsen zu messen, brauchte man bisher komplizierte Messanlagen. Ein Team von MPI Garching, LMU München und TU Wien schafft das nun viel einfacher.

Mit modernen Lasern lassen sich heute extrem kurze Lichtpulse erzeugen, mit denen man dann Materialien untersuchen oder sogar medizinische Diagnosen erstellen...

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Intelligentes Robotersystem an der TU Bergakademie Freiberg verbessert Trinkwasserkontrolle in Binnengewässern

29.01.2020 | Informationstechnologie

Struktur und Funktion von Lichtrezeptor bei Cyanobakterien aufgeklärt

29.01.2020 | Biowissenschaften Chemie

Unerwartetes Materialverhalten: Vom 2D-Kristall zum 1D-Draht

29.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics