Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

5000 mal schneller als ein Computer

14.01.2019

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom

Wenn Licht in einem Halbleiterkristall ohne Inversionssymmetrie absorbiert wird, können elektrische Ströme erzeugt werden.


Einheitszelle des Halbleiters Galliumarsenid (GaAs)

Ausführliche BU siehe Text.

MBI Berlin


Messungen / Verschiebeströme in GaAs, die sehr schnell oszillieren und damit THz-Strahlung mit einer Bandbreite bis zu 20 THz erzeugen

Ausführliche BU siehe Text.

MBI Berlin

Wissenschaftler am Max-Born-Institut haben jetzt gerichtete Ströme bei Terahertzfrequenzen (THz) erzeugt, die bei weitem die Taktraten moderner Höchstfrequenzelektronik schlagen. Die Forscher zeigen, dass eine elektronische Ladungsübertragung zwischen benachbarten Atomen im Kristallgitter den zugrunde liegenden physikalischen Mechanismus darstellt.

Solarzellen konvertieren die Energie von Licht in einen gerichteten elektrischen Strom, welcher dann die Energieversorgung von elektrischen Verbrauchern gewährleistet.

Physikalische Schlüsselprozesse sind hierbei die Ladungstrennung während der Lichtabsorption und der anschließende Transport von elektrischer Ladung zu den Kontakten der Solarzelle.

Die elektrischen Ströme werden von negativen (Elektronen) und positiven Ladungsträgern (Löchern) getragen, die sogenannte Intrabandbewegungen in den verschiedenen elektronischen Bändern des Halbleiters ausführen.

Aus physikalischer Sicht sind folgende Fragen wesentlich: Welches ist die kleinste Einheit in einem Kristall, die solch einen lichtinduzierten gerichteten Strom erzeugen kann? Was sind die höchstmöglichen Frequenzen für solche elektrischen Ströme? Welche Mechanismen auf der atomaren Längenskala sind für solch einen Ladungstransport verantwortlich?

Die kleinste Einheit in einem Kristall ist die sogenannte Einheitszelle, eine wohldefinierte Anordnung von Atomen, die durch die chemischen Bindungen bestimmt wird. Die Einheitszelle des prototypischen Halbleiters GaAs wird in Abb. 1(a) gezeigt und stellt ein Kristallgitter aus Gallium- und Arsen-Atomen ohne Inversionszentrum dar.

Der elektronische Grundzustand des Kristalls ist durch ein vollständig gefülltes Valenzband gekennzeichnet, dessen elektronische Ladungsdichte auf der Bindung zwischen Ga- und As-Atomen konzentriert ist (Abb. 1(b)). Bei Absorption von infrarotem oder sichtbarem Licht wird ein Elektron aus dem Valenzband in das energetisch nächstgelegene Leitungsband gehoben.

In diesem neuen Zustand ist die elektronische Ladung in Richtung des Ga-Atoms verschoben (Abb. 1(c)). Dieser Ladungstransfer entspricht einem lokalen elektrischen Strom, welcher Interbandstrom oder auch Verschiebestrom (engl. shift current) genannt wird und sich fundamental von Elektronenbewegungen innerhalb der Bänder unterscheidet.

Bis vor kurzem gab es eine kontroverse Debatte unter Theoretikern, ob der experimentell beobachtete, lichtinduzierte Strom auf Intrabandbewegungen (wie in der Solarzelle) oder Interbandbewegungen fußt.

Wissenschaftler am Max-Born-Institut in Berlin untersuchten experimentell die lichtinduzierten elektrischen Ströme im Halbleiter Galliumarsenid (GaAs) zum ersten Mal auf ultraschnellen Zeitskalen bis hinab zu 50 Femtosekunden (1 fs = 10 hoch -15 Sekunden). Sie berichten über ihre Ergebnisse in der Fachzeitschrift Physical Review Letters 121, 266602 (2018).

Mit Hilfe von ultrakurzen, intensiven Lichtimpulsen vom infraroten (λ = 900 nm) bis in den sichtbaren Spektralbereich (λ = 650 nm, oranges Licht) erzeugten sie Verschiebeströme in GaAs, die sehr schnell oszillieren und damit THz-Strahlung mit einer Bandbreite bis zu 20 THz erzeugen (Abb. 2).

Die Eigenschaften dieser Ströme und die zugrunde liegenden Elektronenbewegungen konnten im Detail über abgestrahlte THz-Wellen bestimmt werden, deren Amplitude und Phase direkt experimentell gemessen wurden. Die THz-Strahlung zeigt ultrakurze Stromstöße des gleichgerichteten Lichtes bei Frequenzen, die 5000 mal höher sind als die Taktraten moderner Computersysteme.

Die experimentell beobachteten Eigenschaften der Verschiebeströme sind nicht mit dem physikalischen Bild von Intrabandbewegungen von Elektronen oder Löchern vereinbar. Ganz im Gegenteil, Modellrechnungen basierend auf Intrabandbewegungen von Elektronen in einer Pseudopotential-Bandstruktur reproduzieren die experimentellen Ergebnisse und zeigen, dass ein interatomarer Übertrag von elektronischer Ladung in der Größenordnung einer chemischen Bindungslänge den Schlüsselmechanismus darstellt.

Dieser Prozess findet in jeder Einheitszelle des Kristalls statt, d.h. auf einer Subnanometer Längenskala, und erlaubt die Gleichrichtung von Licht. Dieser Effekt kann auch bei noch höheren Frequenzen ausgenutzt werden und eröffnet neue interessante Anwendungen in der Höchstfrequenzelektronik.

Bildunterschriften:

Abb.1 : Abb. 1: (a) Einheitszelle des Halbleiters Galliumarsenid (GaAs). Chemische Bindungen (blau) binden jedes Galliumatom an vier benachbarte Arsenatome (und umgekehrt). Valenzelektronendichte auf der grauen Ebene in (a) im (b) Grundzustand (Elektronen im Valenzband) und im (c) angeregten Zustand (Elektronen im Leitungsband). Zusätzlich zu den hier gezeigten Valenzelektronen gibt es noch stark gebundene Elektronen nahe der Atomkerne.

Abb. 2: Oben wird das Prinzip der Messungen erklärt. Ein kurzer Puls im nahen Infrarot oder im Sichtbaren wird auf eine dünne GaAs-Schicht gesandt. Das elektrische Feld der hierdurch erzeugten THz-Strahlung wird als Funktion der Zeit (1 ps = 10 hoch -12 s) gemessen. Unten wird ein Beispiel für eine solche Messung gezeigt. Sie enthält Oszillationen mit einer Periode von 0.08 ps, was einer Frequenz von 12000 GHz=12 THz entspricht.

Wissenschaftliche Ansprechpartner:

Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Dr. Michael Wörner, woerner@mbi-berlin.de, Tel.: 030 6392 1470
Dr. Ahmed Ghalgaoui, ghalgaou@mbi-berlin.de, Tel.: 030 6392 1474
Prof. Dr. Klaus Reimann, reimann@mbi-berlin.de, Tel.: 030 6392 1476
Prof. Dr. Thomas Elsässer, elsasser@mbi-berlin.de, Tel.: 030 6392 1400

Originalpublikation:

A. Ghalgaoui, K. Reimann, M. Woerner, T. Elsaesser, C. Flytzanis, K.Biermann
„Resonant second-order nonlinear terahertz response of gallium arsenide”
Phys. Rev. Lett. 121, 266602 (2018)
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.266602

Weitere Informationen:

https://www.mbi-berlin.de/de/current/index.html#2018_12_27

Dipl.-Geogr. Anja Wirsing | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Meilenstein für eine neue Ära der Beobachtung von erdähnlichen Exoplaneten
05.06.2020 | Universität Wien

nachricht Neue Quantenmaterialien mit einzigartigen Merkmalen
05.06.2020 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sehvermögen durch Gentherapie wiederherstellen

Neuer Ansatz zur Behandlung bislang unheilbarer Netzhautdegeneration

Menschen verlassen sich in erster Linie auf ihr Augenlicht. Der Verlust des Sehvermögens bedeutet, dass wir nicht mehr lesen, Gesichter erkennen oder...

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Kleines Protein, große Wirkung

In Meningokokken spielt das unscheinbare Protein ProQ eine tragende Rolle. Zusammen mit RNA-Molekülen reguliert es Prozesse, die für die krankmachenden Eigenschaften der Bakterien von Bedeutung sind.

Meningokokken sind Bakterien, die lebensbedrohliche Hirnhautentzündungen und Sepsis auslösen können. Diese Krankheitserreger besitzen ein sehr kleines Protein,...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: Magnetische Kristallschichten für den Computer von Morgen

Ist die Elektronik, so wie wir sie kennen, am Ende?

Der Einsatz moderner elektronischer Schaltkreise für immer leistungsfähigere Rechentechnik und mobile Endgeräte stößt durch die zunehmende Miniaturisierung in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Was Salz und Mensch verbindet

04.06.2020 | Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schutz der neuronalen Architektur

05.06.2020 | Biowissenschaften Chemie

Wie das Gehirn unser Sprechen kontrolliert - Beide Gehirnhälften leisten besonderen Beitrag zur Sprachkontrolle

05.06.2020 | Interdisziplinäre Forschung

Akute myeloische Leukämie: Größerer Entscheidungsspielraum bei Therapie-Start

05.06.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics