Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

36 auf einen Streich – Forscher beobachten „unmögliche“ Ionisation

12.11.2012
Mit dem weltstärksten Röntgenlaser hat ein internationales Forscherteam unter Hamburger Leitung ein überraschendes Verhalten von Atomen entdeckt:

Mit einem einzigen Röntgenblitz konnte die Gruppe um Daniel Rolles vom Center for Free-Electron Laser Science (CFEL) die Rekordzahl von 36 Elektronen auf einmal aus einem Xenon-Atom herausschießen. Das sind deutlich mehr, als bei der Energie der verwendeten Röntgenstrahlung rechnerisch überhaupt möglich ist. Die Wissenschaftler stellen ihre unerwarteten Beobachtungen im Fachblatt „Nature Photonics“ vor. Das CFEL ist eine Kooperation von DESY, der Max-Planck-Gesellschaft und der Universität Hamburg.

Verliert ein Atom Elektronen, bekommt es eine positive elektrische Ladung – es wird ionisiert. Diese Ionisation ist umso stärker, je mehr Elektronen dem Atom entrissen werden. Die Forscher um Rolles von der Max Planck Advanced Study Group am CFEL hatten an der Linac Coherent Light Source (LCLS) des US-Forschungszentrums SLAC in Kalifornien Atome des Edelgases Xenon mit intensiven Röntgenlaserblitzen beschossen. Die Lichtteilchen (Photonen) der verwendeten Röntgenstrahlung hatten mit 1,5 Kilo-Elektronenvolt (1,5 keV) rund tausendmal mehr Energie als sichtbares Licht. Trifft so ein energiereiches Photon auf ein Elektron in der Xenon-Atomhülle, gibt es seine Energie an das Elektron ab. Durch diesen Stoß kann das Elektron aus der Atomhülle herausgeschubst werden – je nachdem, wie fest es gebunden ist.

Rechnerisch lassen sich bei der verwendeten Energie bis zu 26 der 54 Elektronen des Edelgases herausschießen, die übrigen sind zu stark gebunden. Tatsächlich beobachteten die Wissenschaftler jedoch, dass bis zu 36 Elektronen aus den Atomen flogen. „Nach unserem Wissen ist das die höchste Ionisation, die jemals mit einem einzigen elektromagnetischen Impuls in einem Atom erreicht worden ist“, betont Rolles, der künftig eine Helmholtz-Nachwuchsgruppe bei DESY leiten wird. „Unsere Beobachtung zeigt, dass die bestehenden theoretischen Ansätze modifiziert werden müssen.“

Ursache für die „unmögliche“ Ionisation ist eine sogenannte Resonanz: Im verwendeten Energiebereich können die Xenon-Elektronen sehr viel Röntgenstrahlung aufnehmen. Manche werden dadurch direkt aus dem Atom hinausbefördert, andere gehen in einen sogenannten angeregten, das heißt energiereicheren Zustand über, sind aber noch gebunden. Fällt eines der angeregten Elektronen jedoch in seinen Ausgangszustand zurück, wird wiederum Energie frei, die einem anderen angeregten Elektron den nötigen Extra-Schubs geben kann, um es ganz aus dem Atom zu befördern. In seltenen Fällen wird auch das bereits angeregte Elektron von einem zweiten Photon aus dem Röntgenblitz getroffen und so aus der Atomhülle geschossen.

„Das LCLS-Experiment hat einen unerwarteten und zuvor unerreichten Ladungszustand produziert, indem gleich Dutzende Elektronen aus einem Atom katapultiert wurden“, unterstreicht Ko-Autor Benedikt Rudek, Doktorand am Heidelberger Max-Planck-Institut für Kernphysik, der die Daten analysiert hat. „Die absorbierte Energie pro Atom war mehr als doppelt so hoch wie erwartet.“ Dieser Resonanzeffekt ist für Xenon gerade bei einer Energie von 1,5 keV besonders stark. Entsprechend beobachteten die Forscher selbst bei einer höheren Energie von 2 keV nur weniger stark ionisierte Atome. Auf Grundlage der Messungen verfeinerten CFEL-Wissenschaftler ein mathematisches Modell, mit dem sich solche Resonanzen in schweren Atomen berechnen lassen. In Folgeexperimenten haben Forscher unter anderem Krypton und Moleküle mit schweren Atomen an der LCLS untersucht, wie Ko-Autor Artem Rudenko betont, der inzwischen an der Kansas State University arbeitet und eines dieser Folgeexperimente geleitet hat.

Die Beobachtungen haben auch praktische Bedeutung für die Forschung: „Unsere Ergebnisse liefern ein Rezept, um den Elektronenverlust in einer Probe zu maximieren“, erläutert Rolles. Das kann erwünscht oder unerwünscht sein. „Beispielsweise können Forscher unsere Ergebnisse nutzen, die ein sehr stark elektrisch geladenes Plasma erzeugen wollen.“ Bei der Untersuchung biologischer Proben hingegen sollten Wissenschaftler die Resonanzbereiche solcher schweren Atome vermeiden. "Die meisten biologischen Proben enthalten einige schwere Atome", betont Rolles. Im Resonanzbereich werden solche Proben an diesen Stellen besonders schnell beschädigt, was die Abbildungsqualität beeinträchtigen kann.

Für die Präzisionsmessungen an der LCLS diente eine von der Max Planck Advanced Study Group (ASG) am CFEL zusammen mit dem Max-Planck-Institut für Kernphysik, dem Max-Planck-Institut für medizinische Forschung und dem Max-Planck-Institut Halbleiterlabor entwickelte Experimentierkammer, die in insgesamt 40 Kisten komplett nach Kalifornien verschifft wurde. Diese CFEL-ASG Multi-Purpose chamber (CAMP) war drei Jahre an der LCLS aufgebaut und kam bei mehr als 20 Experimenten zum Einsatz.

An der Untersuchung waren außer dem Hamburger Center for Free-Electron Laser Science, DESY und dem US-Forschungszentrum SLAC mehrere Max-Planck-Institute sowie rund ein Dutzend Institutionen aus Deutschland, Frankreich, Japan und den USA beteiligt.

Originalveröffentlichung
Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses; Daniel Rolles et al.; Nature Photonics, 2012 (online vorab veröffentlicht); DOI: 10.1038/NPHOTON.2012.261
Wissenschaftliche Ansprechpartner
Daniel Rolles, Center for Free-Electron Laser Science (CFEL), +49 40 8998-6239, daniel.rolles@asg.mpg.de

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de/
http://www.asg.mpg.de
http://www.flickr.com/photos/slaclab/5411016744/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode zur Vermessung nano-strukturierter Lichtfelder
23.09.2019 | Westfälische Wilhelms-Universität Münster

nachricht TU Dortmund erstellt hochgenaues 3D-Modell vom Rover-Landeplatz auf dem Mars
18.09.2019 | Technische Universität Dortmund

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer Cluster of Excellence auf der K 2019: Frischer Wind für die Kreislaufwirtschaft von Kunststoffen

Der weltweite Eintrag von Kunststoffen in die Umwelt muss gestoppt werden. Wie ein Kunststoff beschaffen sein muss, damit er kreislauffähig, schnell und rückstandlos abbaubar wird oder im besten Fall nicht in die Umwelt gelangt, ist Thema des Fraunhofer Cluster of Excellence »Circular Plastics Economy«. Auf der K 2019 präsentieren die beteiligten fünf Fraunhofer-Institute am Beispiel Kunststoff den Forschungsansatz, der Energie- und Materialströme einer Wertstoffkette in eine zirkuläre Wirtschaftsform überführen soll. Halle 7, Stand SC1.

350 Millionen Tonnen Kunststoff wurden 2017 weltweit produziert, rund 65 Millionen Tonnen davon in Europa. Kunststoff ist unverzichtbar für...

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte internationale Konferenz zur Erforschung von Gebärdensprachen an der Universität Hamburg

23.09.2019 | Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neues Analyse-Tool für Datenbankmanagementsysteme: Mowgli weist den Weg im Datenbanken-Dschungel

23.09.2019 | Informationstechnologie

Fraunhofer Cluster of Excellence auf der K 2019: Frischer Wind für die Kreislaufwirtschaft von Kunststoffen

23.09.2019 | Messenachrichten

Qualitätskontrolle in der Immunkommunikation: Chaperone erkennen unfertige Signalmoleküle im Immunsystem

23.09.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics