In 20 Millionen Stunden die Finsternis sichtbar machen

Kollision zweier Schwarzer Löcher: Die numerischen Daten einer Supercomputersimulation wurden in einer Computergrafik visualisiert. Der zeitliche Ablauf der Kollision ist von unten nach oben durch die spiralförmigen Bewegungsspuren von zwei Schwarzen Löchern dargestellt, die zu einem Schwarzen Loch verschmelzen (in Rot statt Schwarz zur besseren Sichtbarkeit). Abb.: Thierfelder/Brügmann (SFB/TR7)<br>

Spitzenforschung hängt zunehmend von der Verfügbarkeit enormer Rechenleistung ab. In Europa entsteht deshalb derzeit ein Netzwerk von Supercomputern, um Rechenprobleme immenser Größe zu lösen. Verschiedene Supercomputerzentren haben sich zur Partnership for Advanced Computing in Europe (PRACE) zusammengeschlossen und vergeben Rechenzeit an ausgewählte Forschungsvorhaben. An einem von nur 24 europäischen Großprojekten, die dieses Jahr bewilligt wurden, sind maßgeblich Wissenschaftler der Friedrich-Schiller-Universität Jena beteiligt.

Gemeinsam mit Kollegen u. a. aus Spanien und England bekamen sie für umfangreiche Forschungen zu Schwarzen Löchern und Neutronensternen insgesamt 19,7 Millionen Stunden an Computerzeit zugesprochen. Ab dem 1. November 2011 stehen dafür Supercomputer in Jülich und im französischen Bruyères-le-Châtel zur Verfügung. Die Rechenzeit entspricht 2.250 Prozessoren, die ein Jahr lang ohne Unterbrechung rechnen. Allein die Kosten für Strom und Kühlung würden den Etat einer einzelnen Forschergruppe bei Weitem übersteigen.

„Zu den großen Herausforderungen der Physik gehören die Einsteingleichungen der Allgemeinen Relativitätstheorie“, sagt Prof. Dr. Bernd Brügmann, Lehrstuhlinhaber für Gravitationstheorie der Universität Jena und Leiter der Jenaer Forschungsgruppe. „Relativistische Doppelsternsysteme bewegen sich nicht auf den klassischen Keplerellipsen, sondern folgen Spiralen, die unweigerlich in einer Kollision enden“, erklärt Brügmann, der das Jenaer Projekt im Rahmen des Sonderforschungsbereichs/Transregio 7 „Gravitationswellenastronomie“ leitet. Dabei werde enorme Energie in Form von Gravitationswellen freigesetzt, die aber extrem schwach seien, wenn sie die Erde erreichen und bisher noch nicht direkt nachgewiesen werden konnten. Im letzten Jahrzehnt wurde ein Netzwerk von Gravitationswellendetektoren gebaut mit dem ehrgeizigen Ziel, Gravitationswellen zu messen. Ein deutsch-britischer Detektor steht beispielsweise in der Nähe von Hannover.

Die genaue Vorhersage der Gravitationswellen durch Computersimulationen soll helfen, das Signal von z. B. zwei Schwarzen Löchern aus dem Rauschen der Detektoren herauszufiltern und zu analysieren. „Schwarze Löcher leuchten zwar nicht, aber in der Gravitationswellenastronomie wären auch die finstersten Ecken des Universums aufgrund der Gravitationswellen sichtbar“, sagt Prof. Brügmann, der Sprecher des Sonderforschungsbereichs (SFB) ist.

Das Forscherteam besteht aus mehr als 20 Physikern, die an den Universitäten von Jena, Cardiff, Wien, den Balearischen Inseln und dem California Institute of Technology arbeiten. Die Simulationen verwenden Software, die von Prof. Brügmann und seiner Arbeitsgruppe in Jena im Rahmen des SFB und eines Graduiertenkollegs der Deutschen Forschungsgemeinschaft entwickelt wird.

Die Begeisterung am Theoretisch-Physikalischen Institut der Uni Jena darüber, eine solche Chance erhalten zu haben, ist groß. „Wir freuen uns sehr darauf, ab dem 1. November 2011 in der obersten Liga der internationalen Supercomputer mitzurechnen“, sagt Brügmann.

Kontakt:
Prof. Dr. Bernd Brügmann
Theoretisch-Physikalisches Institut der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947111
E-Mail: bernd.bruegmann[at]uni-jena.de

Media Contact

Sebastian Hollstein Friedrich-Schiller-Universität J

Weitere Informationen:

http://www.uni-jena.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Der Klang der idealen Beschichtung

Fraunhofer IWS transferiert mit »LAwave« lasergestützte Schallanalyse von Oberflächen in industrielle Praxis. Schallwellen können auf Oberflächen Eigenschaften verraten. Parameter wie Beschichtungsqualität oder Oberflächengüte von Bauteilen lassen sich mit Laser und…

Individuelle Silizium-Chips

… aus Sachsen zur Materialcharakterisierung für gedruckte Elektronik. Substrate für organische Feldeffekttransistoren (OFET) zur Entwicklung von High-Tech-Materialien. Wie leistungsfähig sind neue Materialien? Führt eine Änderung der Eigenschaften zu einer besseren…

Zusätzliche Belastung bei Knochenmarkkrebs

Wie sich Übergewicht und Bewegung auf die Knochengesundheit beim Multiplen Myelom auswirken. Die Deutsche Forschungsgemeinschaft (DFG) fördert ein Forschungsprojekt der Universitätsmedizin Würzburg zur Auswirkung von Fettleibigkeit und mechanischer Belastung auf…

Partner & Förderer