Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universität Mainz präsentiert sich auf der ACHEMA 2012

13.06.2012
Von der elektrochemischen Vanillin-Herstellung bis zum maßgeschneiderten Einsatz von Kunststoffen
Im Rahmen der ACHEMA (Ausstellungstagung für chemisches Apparatewesen), des weltgrößten Ausstellungskongresses für Chemische Technik, Umweltschutz und Biotechnologie vom 18. bis 22. Juni 2012 in Frankfurt a.M., stellt die Johannes Gutenberg-Universität Mainz (JGU) auf dem Gemeinschaftsstand „Rheinland-Pfalz auf der Achema“ (Halle 9.2, Stand B 82) drei interessante und hochinnovative Projekte vor, die den Besuchern einen Eindruck von der wissenschaftlichen und technologischen Leistungsfähigkeit der Universität verschaffen sollen:

ELEKTRA – Vanillin aus Lignin

Vanillin ist der am meisten konsumierte Aromastoff der Welt, doch deckt das natürlich gewinnbare Vanillin nur einen kleinen Bruchteil des Bedarfs. Im Projekt „ELEKTRA“ beschäftigt sich die Universität Mainz mit der elektrochemischen Zersetzung von Lignin – ein in erheblichen Mengen anfallendes Abfallprodukt aus der Zellstoffindustrie – zu Vanillin. Dieses Verfahren wäre nachhaltiger und ressourcenschonender als die bestehenden Synthesewege zum Duft der Vanille. Die Anwendung im industriellen Maßstab würde einen Abfallstoff nutzen und zugleich einen neuen nachwachsenden Rohstoff erschließen.
Das Projekt „ELEKTRA“ wird vom BMELV gefördert und gemeinsam mit der BASF SE (Ludwigshafen) und Condias (Itzehoe) durchgeführt.

Ansprechpartner:
Prof. Dr. Siegfried Waldvogel
Institut für Organische Chemie
Johannes Gutenberg-Universität Mainz
Duesbergweg 10-14
D 55128 Mainz
Tel. +49 6131 39-26069
E-Mail: waldvogel@uni-mainz.de
http://www.chemie.uni-mainz.de/OC/AK-Waldvogel/

Organische Synthese unter Strom – Präparative Elektrochemie

Die chemische Industrie nutzt elektrischen Strom schon lange für die großtechnische Herstellung von Grundstoffen wie Chlor, Natronlauge, unedlen Metallen oder Wasserstoff. Die elektrochemische Synthese komplexer Verbindungen aus dem Bereich der organischen Chemie findet nur selten Anwendung, oft wegen der ungewohnten apparativen Anforderungen. Dabei bietet organische Elektrosynthese zahlreiche Vorteile: direkte Umwandlung elektrischer Energie in Wertprodukte, geringe Abfallmengen und technische Anwendbarkeit. Die JGU Mainz zeigt verschiedene Beispiele, Elektrodentypen und Verfahren, an denen sich Vertreter aus Industrie und Forschung über die Vorteile dieser Methodik informieren können. Künstliche Nasen können rund um die Uhr nach Sprengstoffen schnüffeln, wohingegen die Hundenase spätestens nach einer halben Stunde eine längere Ruhepause benötigt. Mit einer geeigneten chemischen Beschichtung lassen sich extrem hochfrequente Quarzmikrowaagen für diese Aufgaben nutzen. Mit diesen Bauteilen können in hoher Effizienz z.B. Peroxidsprengstoffe aus der Umgebungsluft erschnüffelt werden. Mit einer Kombination aus mehreren Quarzmikrowaagen werden eine Reihe von Sprengstoffspuren und andere Düfte nachgewiesen sowie identifiziert. Der entwickelte Sensor ist miniaturisiert und preiswert in der Herstellung, was eine Massenproduktion ermöglicht. Da sich mit dieser Technologieplattform eine Vielzahl von luftgetragenen Spuren nachweisen lässt, ist ein breiter technischer Einsatz denkbar.

Das Projekt wird u.a. zusammen mit dem Max-Planck-Institut für Polymerforschung (Mainz) und der Universität Bonn durchgeführt.

Ansprechpartner:
Prof. Dr. Siegfried Waldvogel
Institut für Organische Chemie
Johannes Gutenberg-Universität Mainz
Duesbergweg 10-14
D 55128 Mainz
Tel. +49 6131 39-26069
E-Mail: waldvogel@uni-mainz.de
http://www.chemie.uni-mainz.de/OC/AK-Waldvogel/

Fraktionierung von Polymeren

Kunststoffe, auch Polymere genannt, sind aus dem modernen Leben nicht mehr wegzudenken. Besonders in den Bereichen Medizin, Kosmetik und Technik übernehmen sie zunehmend anspruchsvolle Sonderaufgaben. Bei diesen maßgeschneiderten Einsätzen stört oft, dass die Polymere auch bei gleicher chemischer Zusammensetzung aus einem Gemisch unterschiedlicher Kettenlänge bestehen. Um besonderen Anforderungen zu genügen, ist daher eine Entfernung von synthesebedingt unvermeidbaren, störenden Bestandteilen notwendig. Diese Abtrennung zu kurzer oder zu langer Ketten nennt man Polymerfraktionierung. Mit dem patentierten Verfahren namens „kontinuierliche Spinn-Fraktionierung“ sind die Mainzer Wissenschaftler in der Lage, engverteilte Polymerproben herzustellen.
Ansprechpartner:
Dr. John Eckelt
Institut für Physikalische Chemie
Johannes Gutenberg-Universität Mainz
Duesbergweg 10-14
D 55128 Mainz
Tel. +49 6131 39-24639
E-Mail: eckelt@uni-mainz.de
http://wolf.chemie.uni-mainz.de/

Weitere Informationen:
Dr. Wolfgang Stille
Stabsstelle Forschung und Technologietransfer
Johannes Gutenberg-Universität Mainz
D 55099 Mainz
Tel. +49 6131 39 26866
E-Mail: stille@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.achema.de/
http://www.uni-mainz.de/forschung/163_DEU_HTML.php

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Augmented-Reality-System erleichtert die manuelle Herstellung von Produkten aus Faserverbundmaterialien
04.03.2020 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Modulares Fertigungskonzept für Bipolar-Batterien
02.03.2020 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Hygienische und virenfreie Oberflächen: Smartphones schnell und sicher mit Licht desinfizieren

06.04.2020 | Materialwissenschaften

Zuwachs bei stationären Batteriespeichern

06.04.2020 | Energie und Elektrotechnik

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics