Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Safer Food – Less Waste – Sichere Lebensmittel und weniger Müll

12.02.2019

Auf der ICE 2019 stellen die Fraunhofer-Institute für Angewandte Polymerforschung IAP, für Grenzflächen- und Bioverfahrenstechnik IGB und für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP innovative Technologien für nachhaltige Lebensmittelverpackungen vor. Sie haben jeweils umfangreiche Expertise in der Bearbeitung, Prozessentwicklung und -kontrolle, der Entwicklung von speziellen Polymerfolien und der Abscheidung dünnster Schichten für die Verpackungsindustrie.

Aktueller und präsenter denn je ist das Thema Verpackung von Produkten und Lebensmitteln. Nahezu jedem schwebt bereits beim alltäglichen Einkauf und dem Griff zu plastikverpacktem Fleisch oder Gemüse das Bild der unermesslich großen Plastikstrudel in den Weltmeeren vor.


1,25 Meter breites Foliensubstrat an der Rolle-zu-Rolle-Beschichtungsanlage atmoFlex 1250

© Fraunhofer FEP, Fotograf: Ronald Bonss | Bildquelle in Druckqualität: www.fep.fraunhofer.de/presse

Spätestens beim Verstauen der Lebensmittel zuhause wird die Menge der Umverpackungen deutlich. Die Zahlen des Umweltbundesamtes sprechen für sich – in Summe produziert jeder Deutsche jährlich rund 220 Kilogramm Verpackungsmüll.

Ein gänzlicher Verzicht auf Verpackungsfolie ist aber kaum umsetzbar. Hygienestandards, Transportwege und letztlich das Kaufverhalten der Kunden hinsichtlich frisch anmutender Lebensmittel zu erschwinglichen Preisen bedingen hygienische, funktionale und sichere Verpackungen, denn Bakterien, Viren und Schimmelpilze können Nahrungsmittel leicht und überall verderben und überdies schwerwiegende Krankheiten hervorrufen.

Nanoröhren mit antimikrobiellen ätherischen Ölen

Das 2017 gestartete EU-Gemeinschaftsprojekt »NanoPack« fokussiert genau diese Herausforderungen und hat das Ziel, modernste antimikrobielle Verpackungslösungen für verderbliche Lebensmittel auf der Grundlage natürlicher Nanomaterialien zu entwickeln, um Ausbrüche lebensmittelbedingter Krankheiten zu verhindern und Lebensmittelabfälle durch frühen Verderb zu reduzieren.

Auch der ökonomische Aspekt zur Herstellung, Aufskalierung und Validierung (auch hinsichtlich regulatorischer Anforderungen) wurde beachtet, um marktfähige und kostengünstige Lebensmittelverpackungen produzieren zu können.

Als Basis zur Entwicklung der neuen Verpackungslösungen im Projekt NanoPack werden Halloysit-Nanoröhren (HNTs) für den Einsatz in Lebensmittelverpackungen untersucht. Durch Modifizierung der Oberfläche dieses Nanomaterials können ätherische Öle, wie z. B. Thymianöl, effizient in eine Verpackungsfolie integriert freigegeben werden.

Durch die als Dampf freigegebenen ätherischen Öle wird das Wachstum von Mikroben sowohl auf der Produktoberfläche als auch im Verpackungsraum vermindert. Die Wissenschaftler am Fraunhofer IAP sind federführend an der Entwicklung von Behandlungsverfahren und der Oberflächenfunktionalisierung von HNTs sowie an der Compoundierung, also der Integration von Partikeln – beladene HNTs – in Polymerfolien, beteiligt.

Schichtdicke mit fluoreszierenden Tinten messen

In diesem Zusammenhang sind auch Verfahren der Prozesskontrolle relevant, die das Fraunhofer IAP ebenfalls vorstellen wird. Bei der Herstellung dünner, transparenter Schichten, wie in Verpackungsfolien, kann eine in-line-Prozesskontrolle zur Qualitätssicherung und -steigerung beitragen und teure Materialkomponenten können effizient eingesetzt werden.

Durch ein vollständiges Monitoring kann der Herstellungsprozess so optimiert werden, dass von einer funktionalen Komponente (z. B. einer Sauerstoffbarriereschicht oder einem Laminierklebstoff) nur so viel eingesetzt wird, wie für die Funktion nötig ist, wodurch erheblich Material und Kosten gespart werden können. Fluoreszierende Farbstoffe werden als Additiv in der Funktionsschicht eingesetzt, um durch das Messen des Fluoreszenzlichtes die Verteilung der Schichtdicken zu erfassen.

Der Farbstoff wird dem Schichtmaterial in so geringen Mengen zugesetzt, dass er nicht sichtbar ist und die Materialeigenschaften nicht beeinflusst werden. Durch die Kombination von neuartigen Verpackungsmaterialien mit effektiver Prozesskontrolle werden, so das Ziel der Wissenschaftler, Lebensmittelverpackungen der Zukunft sicherer und gleichzeitig günstiger.

Mehrlagige Barriereschichten gegen Sauerstoff und Wasserdampf

Auch die Wissenschaftler des Fraunhofer IGB arbeiten an Verfahren zur Funktionalisierung von Verpackungsfolien. Um eine möglichst große Bandbreite an Oberflächeneigenschaften herstellen zu können, verfolgt das IGB den Ansatz, Polymerfolien über Plasma-/CVD- und nasschemische Verfahren – oder Kombinationen dieser Technologien – zu funktionalisieren. Dabei entstehen Barriereschichten gegen die Permeation von Sauerstoff und Wasserdampf für Umverpackungen ebenso wie Barriereschichten, die die Freisetzung von Polymeradditiven aus der Umverpackung in ein Lebensmittel oder ein Pharmazeutikum verhindern.

Die Herausforderung dabei: Die Schichten müssen bis zu einem gewissen Maß elastisch sein, damit sie auf den Polymeren nicht brechen oder reißen. Die Fraunhofer-Forscher realisieren die Beschichtungen daher in Form mehrerer, mechanisch voneinander entkoppelter Lagen, die »Schicht für Schicht« sukzessive im Plasma abgeschieden werden.

»Durch Optimierung verschiedener Prozessparameter wie der Art und Menge des eingesetzten Plasmagases, der Anregungsfrequenz, der Gasströmung, dem Druck und der Behandlungszeit können wir nacheinander glasartige Schichten mit der gewünschten Barrierefunktion und silikonartige elastische Zwischenschichten erzeugen«, erläutert Dr. Jakob Barz, Gruppenleiter »Plasmatechnik und dünne Schichten« am IGB. Auf diese Weise konnten die Forscher die Barrierewirkung von Kunststofffolien gegen Wasserdampf und Sauerstoff bis zum Faktor 1000 gegenüber unbehandeltem Material erhöhen.

Die abgeschiedenen Barriereschichten können zudem mit einer weiteren Schicht kombiniert werden, um ein Ablaufen des Lebensmittels beim Entleeren einer Folienverpackung zu verbessern.

Biobasierte Barriereschichten

Aktuell forscht das Fraunhofer IGB auch an biobasierten Schichten mit einer Barrierefunktion gegenüber Sauerstoff und Wasserdampf. Auf der ICE europe präsentiert das Institut erste Barrierebeschichtungen bzw. Filme, die zu 100 Prozent aus natürlichen Ausgangsstoffen bestehen und zusätzlich antioxidative oder antimikrobielle Eigenschaften besitzen.

»Diese Filme und Beschichtungen stellen wir aus einer neu entwickelten wasserbasierten Dispersion her, die unter anderem natürliche Wachse und Proteine enthält. Die Dispersion kann mit üblichen Beschichtungstechniken verarbeitet werden«, erläutert Dr. Michaela Müller, Leiterin der IGB-Forschungsgruppe »Polymere Grenzflächen und Biomaterialien«. Der große Vorteil: Die Schichten sind auch 100 Prozent abbaubar und können damit helfen, Plastikmüll zu reduzieren. Die Entwicklung erfolgt im Rahmen des IGF-Projektes BioActiveMaterials, an dem auch das Fraunhofer IVV beteiligt ist.

Funktionalisierung für Laminierung und Verklebung

Für eine Veränderung von Oberflächeneigenschaften, die für nachfolgende Prozessschritte, beispielsweise die Verklebung benötigt werden, modifizieren die Stuttgarter Forscher Polymerfolien mit spezifischen chemisch funktionellen Gruppen. Eine Aminofunktionalisierung lässt sich mit Gasphasen- und nasschemischen Prozessschritten auch auf den Randbereich von Verpackungsfolien beschränken und zur Laminierung der
Folien nutzen.

Sichere Lebensmittel durch physikalische Entkeimung

Für eine längere Haltbarkeit von Lebensmitteln muss die Verpackung frei von kontaminierenden Keimen sein. Üblicherweise werden Mikroorganismen auf Verpackungen je nach Material durch Hitze, Gaseinwirkung, ionisierende oder UV-Strahlung inaktiviert. Eine materialschonende Alternative zur Sterilisation bei hohen Temperaturen sind die am IGB eingesetzten Niedertemperaturplasmen. Sie eignen sich nicht nur zur Erzeugung von Schichten, sondern können aufgrund reaktiver Moleküle und UV-Strahlung im Plasmagas auch Mikroorganismen inaktivieren.

»Mit der Plasmasterilisation werden selbst hochresistente Endosporen verschiedener Bacillus-Arten schon nach relativ kurzen Behandlungszeiten vermehrungsunfähig«, sagt Barz. Daneben haben Wissenschaftler am Fraunhofer IGB die UV-Behandlung weiterentwickelt, um die Zahl vermehrungsfähiger Mikroorganismen auf Oberflächen zu minimieren. Mit neuen, speziell konzeptionierten Excimer-Lampen oder neuester UV-LED-Technologie können Verpackungsfolien effektiv und schnell sterilisiert werden. Diese Verfahren können auf Verpackungsmaschinen hochskaliert und an individuelle Anforderungen angepasst werden.

Rollcoater für Veredelung in Hochgeschwindigkeit

Der Markt der Verpackungsfolien ist extrem preissensitiv. Diesem Aspekt widmet sich das Fraunhofer FEP durch die Entwicklung hochproduktiver Veredlungsverfahren, die insbesondere durch sehr hohe Geschwindigkeiten gekennzeichnet sind. Ein Beispiel ist die Herstellung von transparenten Barriereschichten aus Aluminiumoxid gegen äußere Einflüsse wie Feuchtigkeit oder auch Sauerstoff auf Kunststofffolien mittels plasmaaktivierter Hochratebedampfung bei Bahngeschwindigkeiten von mehreren Metern pro Sekunde. Hierzu betreibt das Fraunhofer FEP sogenannte Rollcoater, die Folienmaterial mit einer Breite bis zu 700 mm und Bahnlängen von mehreren Kilometern effizient beschichten können. Derzeit widmen sich die Forscher der Qualifizierung dieser etablierten Technologie zur Anwendung auf biobasierten Materialien.

Ein weiteres Beispiel ist die Modifikation von Polymermaterialien, wenn diese schon als Folie vorliegen. Hierzu betreibt das Fraunhofer FEP eine Rolle-zu-Rolle-Anlage, die mittels Elektronenbestrahlung die Struktur der Polymermoleküle modifiziert. Effekte, wie die Anpassung des E-Moduls oder der thermischen Beständigkeit, können dabei erzielt werden. Der Nachweis für fossil basierte Polymerfolien wurde in der Vergangenheit schon erbracht. Inwieweit sich die Effekte auch bei biobasierten Materialien feststellen lassen, wird derzeit untersucht. Dr. Steffen Günther erläutert dazu: »Diese Behandlung findet bei Atmosphärendruck und nicht unter Vakuum statt. Hierfür kommt die am Fraunhofer FEP vorhandene Pilotanlage atmoFlex 1250 zum Einsatz. Durch ihre Bahnbreite von 1250 mm kann ein hoher Durchsatz in der Behandlung der Folien bei Bahngeschwindigkeiten bis zu 150 m/min erzielt werden. Beide Aspekte erlauben eine sehr kosteneffiziente Prozessierung der Folien.«

Die drei Fraunhofer-Institute wollen mit ihren Forschungen einen signifikanten Beitrag zur Müllvermeidung leisten. Bei gleichzeitiger Erhöhung der Haltbarkeit von Lebensmitteln soll durch die vorgestellten Ansätze zur Entwicklung von biobasierten Verpackungsfolien ein positiver Nutzen für Kunden, Umwelt und die Produzenten entstehen. Die Forschungsergebnisse, neueste beschichtete Verpackungsfolien sowie eine erste Verpackungsfolie mit verkapseltem ätherischen Öl werden die Wissenschaftler der Fraunhofer-Institute IAP, IGB und FEP während der ICE europe, vom 12. – 14. März 2019, in München, in Halle A5 am Stand Nr. 1174 vorstellen.

Fraunhofer IAP, IGB und FEP auf der ICE europe 2019:
Fraunhofer-Gemeinschaftsstand, Halle A5, Stand Nr. 1174

Pressekontakt:

Frau Annett Arnold

Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP
Telefon +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Deutschland | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/5y4

Franziska Lehmann | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Weitere Berichte zu: Elektronik FEP Folien IAP ICE IGB Plasmatechnik Polymerfolien Sauerstoff Verpackungsfolien Wasserdampf Waste

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Kiss and Run“ zur Abfallverwertung in der Zelle

14.02.2020 | Biowissenschaften Chemie

Kurze Impulse mit großer Wirkung

14.02.2020 | Biowissenschaften Chemie

ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze

14.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics