Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuronale Netze ermöglichen autonome Steuerung von Kathetern

04.11.2019

MEDICA 2019: KI für die endovaskuläre Schlaganfalltherapie

Bei einem Schlaganfall zählt jede Minute, durch schnelles Handeln lassen sich schwere Hirnschäden mindern. Sind große Blutgefäße im Gehirn durch Gerinnsel verstopft, entfernt der Operateur den Verschluss mithilfe eines Katheters, den er in die Leiste des Patienten einführt.


© Fraunhofer IPA

Künstliche Intelligenz soll Neuroradiologen künftig bei endovaskulären Operationen unterstützen.

Doch der komplizierte Eingriff erfordert viel Erfahrung, nur wenige Spezialisten können ihn ausführen. Fraunhofer-Forscherinnen und -Forscher setzen auf Künstliche Intelligenz, um den Katheter autonom, computergesteuert, zuverlässig und schnell zum Ort des Eingriffs zu navigieren.

Erste Tests im Simulationsmodell und am Prüfstand sind vielversprechend. Vom 18. bis 21. November präsentiert die Forschergruppe die Funktionsweise ihrer neuen Methode auf der MEDICA 2019 in Düsseldorf an einem Gefäßphantom (Halle 10, Stand G05).

Etwa 270 000 Menschen erleiden hierzulande jedes Jahr einen Schlaganfall – eine plötzliche Durchblutungsstörung im Gehirn. Diese muss schnellstens ärztlich behandelt werden. Andernfalls sterben so viele Gehirnzellen ab, dass der Patient bleibende Schäden wie Lähmungen oder Sprachstörungen davonträgt oder sogar stirbt.

Ärzte therapieren den Hirnschlag immer häufiger durch eine Thrombektomie, einen Eingriff, bei dem über einen Gefäßzugang in der Leiste ein dünner Katheter über die Hauptschlagader bis in das verschlossene Hirngefäß vorgeschoben wird. Im Bereich des Gefäßverschlusses öffnet sich ein sogenannter Stent-Retriever – ein winziges korbähnliches Geflecht – und verhakt sich mit dem Gerinnsel.

Beim Zurückziehen des Katheters bleibt der Pfropfen an der Geflechtstruktur hängen und wird so entfernt. Dieses Verfahren dauert 45 Minuten bis zu 3,5 Stunden, je nach Expertise des Operateurs. Die Thrombektomie setzt eine lange Ausbildung und viel Übung voraus. Allein zehn bis 90 Minuten benötigt der Mediziner – je nach Patient –, um den Katheter zum Blutgerinnsel zu navigieren.

Diese Problematik adressieren Forscherinnen und Forscher der Mannheimer Projektgruppe für Automatisierung in der Medizin und Biotechnologie PAMB, die an das Fraunhofer-Institut für Automatisierung und Produktionstechnik IPA angegliedert ist.

Mithilfe eines robotischen Assistenzsystems – einem computergesteuerten Katheter – wollen sie eine zuverlässigere und schnellere Variante der Therapie etablieren. Die Besonderheit: Der Katheter wird durch Methoden der Künstlichen Intelligenz autonom zum Ort des Eingriffs navigiert.

»Die Operation selbst, also das Herauslösen des Blutpfropfens mithilfe des Stent-Retrievers, führt nach wie vor der Arzt durch. Aber die komplizierte Navigation dorthin, bei der schwierige Anatomien zu überwinden sind, soll künftig ein autonom gesteuerter Katheter erledigen«, sagt Johannes Horsch, Wissenschaftler der Projektgruppe.

»Die autonome Intervention per Katheter eignet sich aber nicht nur bei einem Schlaganfall, sie lässt sich vielseitig anwenden, etwa bei der endovaskulären Operation von Herzinfarkten oder Lebertumoren«, betont der Ingenieur.

Autonome Navigation durch Deep Reinforcement Learning

Ermöglicht werden soll die autonome Navigation durch Deep Reinforcement Learning (DRL), eine Methode, mit der sich neuronale Netze trainieren lassen. Sie ähnelt der Art, wie Menschen lernen. Die Besonderheit von DRL: Der Algorithmus generiert die Daten zum Trainieren des neuronalen Netzes eigenständig durch permanentes Üben am Computer-Simulationsmodell – einer virtuellen Nachbildung eines Gefäßbaums und Katheters, mit der der reale Algorithmus interagieren kann.

Die Forscher haben dazu einen zusätzlichen Bewertungsalgorithmus entwickelt, der bewertet, ob die jeweilige Aktion richtig oder falsch ist. Wird der Führungsdraht korrekterweise nach rechts gedreht und an der Verzweigung in das dortige Gefäß geschoben, so erhält der Algorithmus einen Pluspunkt beziehungsweise einen Zahlenwert von beispielsweise »+1«. Bei einer falschen Aktion lautet der Zahlenwert entsprechend »-1«. Auf Basis dieser Rückmeldungen lernt der Algorithmus eigenständig, und das neuronale Netz wird laufend entsprechend angepasst und optimiert.

»Mit dem Modell können wir virtuell alle möglichen Bewegungen des Katheters simulieren und das neuronale Netz bis zu einem gewissen Stadium trainieren. In bisherigen Tests am Simulationsmodell waren wir in 95 Prozent der Fälle erfolgreich, sprich der Katheter konnte in einem vereinfachten Szenario problemlos autonom zum Gefäßverschluss navigiert werden. Bis zum Start der MEDICA wollen wir jedoch eine Erfolgsquote von 99 Prozent erzielen«, sagt Horsch.

Damit der Mediziner die autonome Navigation während des Eingriffs nutzen kann, muss der Katheter im Patienten in Echtzeit lokalisiert werden. Hieran arbeitet der Projektpartner, das Fraunhofer-Institut für Digitale Medizin MEVIS. Dort entwickeln die Experten einen »intelligenten Katheter«, der sich mittels faser-optischer Sensorik und ohne Bildgebung im Gefäßsystem lokalisieren lässt.

Außerdem trainieren sie neuronale Netze zur Extraktion des Katheters aus fluoroskopischen Bilddaten. Im nächsten Schritt werden die im Simulationsmodell generierten Ergebnisse auf Phantome übertragen, einer Nachbildung eines Gefäßbaums aus Kunststoff.

Steuerungsalgorithmus vereint Erfahrungswissen von vielen Ärzten

Der Steuerungsalgorithmus wird das Erfahrungswissen von vielen Ärzten umfassen und infolgedessen ein schnelleres Navigieren durch den Körper erlauben. Vor allem aber wird die große Streuung der sehr unterschiedlichen Dauer der Eingriffe, bedingt durch die variierenden Anatomien der Patienten, vermieden.

Ein weiterer Vorteil: Insbesondere kleine Kliniken, die nicht über entsprechend ausgebildete Spezialisten verfügen, sollen künftig von dem Verfahren profitieren. Sie wären dann in der Lage, endovaskuläre Schlaganfalltherapien durchzuführen, bei denen Katheter zum Einsatz kommen. Diese Eingriffe können in der Regel nur in spezialisierten Schlaganfallstationen – sogenannten Stroke Units – durchgeführt werden.


Komplexes Zusammenspiel zwischen Katheter und Draht

Derzeit navigieren die Forscher in ihren Simulationstests einen Führungsdraht, im nächsten Schritt starten die Untersuchungen mit einem Katheter, der den Draht ummantelt. »Bei einer realen Operation ist der Katheter über den Draht geschoben. Der Katheter wird nachgeschoben, wenn der Führungsdraht in das richtige Gefäß navigiert wurde«, sagt Horsch.

Ziel des Teams ist der Einsatz von zwei oder drei ineinanderliegenden Kathetern, die immer kleiner werden, um in die filigranen Blutgefäße im Kopf zu passen, die wesentlich enger sind als die Gefäße etwa in der Leistenregion.

Bis zum Projektende im September 2020 werden die Forscherinnen und Forscher in präklinischen Untersuchungen den Steuerungsalgorithmus am Silikonphantom perfektionieren, das den gesamten Gefäßbaum von der Leiste bis zum Kopf nachbildet. In Anschlussprojekten soll das System insbesondere hinsichtlich der Zuverlässigkeit und Sicherheit weiterentwickelt werden.

Daran anschließend sind für klinische Studien zum Nachweis der Sicherheit und Wirksamkeit etwa vier bis fünf Jahre anberaumt. »Es wird sicher noch zehn bis 15 Jahre dauern, bis das System kommerziell in Kliniken eingesetzt werden kann, zuvor sind umfangreiche Forschungsarbeiten sowie klinische Studien erforderlich.

Von Gesetzgeberseite ist darüber hinaus die rechtliche regulatorische Zulassung von neuronalen Netzen in der Medizin zu klären«, resümiert der Wissenschaftler. Den Stand ihrer Forschung demonstrieren der Ingenieur und seine Kollegen vom 18. bis 21. November auf der MEDICA in Düsseldorf (Halle 10, Stand G05).

Kontakt:

Jörg-Dieter Walz
Pressekommunikation
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Nobelstr. 12
70569 Stuttgart
Telefon +49 711 970-1667

Jörg-Dieter Walz | Fraunhofer Forschung Kompakt
Weitere Informationen:
https://www.fraunhofer.de/de/presse/presseinformationen/2019/november/neuronale-netze-ermoeglichen-autonome-steuerung-von-kathetern.html

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Von IT-Rack bis Edge: Antworten für die industrielle Transformation
10.07.2020 | Rittal GmbH & Co. KG

nachricht ILA Goes Digital – Automatisierung & Produktionstechnik für die wandlungsfähige Flugzeugproduktion
29.06.2020 | Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

Mit einem Standard-Kryoelektronenmikroskop erzielen Biochemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) erstaunlich gute Aufnahmen, die mit denen weit teurerer Geräte mithalten können. Es ist ihnen gelungen, die Struktur eines Eisenspeicherproteins fast bis auf Atomebene aufzuklären. Die Ergebnisse wurden in der Fachzeitschrift "PLOS One" veröffentlicht.

Kryoelektronenmikroskopie hat in den vergangenen Jahren entscheidend an Bedeutung gewonnen, besonders um die Struktur von Proteinen aufzuklären. Die Entwickler...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Konzept für neue Technik zur Untersuchung superschwerer Elemente vorgestellt

13.07.2020 | Biowissenschaften Chemie

Alternativmethoden für Tierversuche: VISION – Ein mikrofluidisches Chipsystem als Alternative zu Tierversuchen

13.07.2020 | Biowissenschaften Chemie

Neue Molekülbibliothek hilft bei der systematischen Suche nach Wirkstoffen

13.07.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics