Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht spürt Arthritis auf

03.11.2015

Gelenkentzündungen kommen häufig vor und können verschiedene Ursachen haben. Viele Formen, wie die rheumatoide Arthritis, sind nicht heilbar. Doch je früher man die Krankheit erkennt, desto besser lässt sie sich mit Medikamenten behandeln. Deshalb entwickeln Fachleute derzeit in dem EU-Projekt IACOBUS unter der Leitung des Fraunhofer-Instituts für Biomedizinische Technik IBMT einen Fingerscanner, mit dem sich Arthritis-Erkrankungen künftig sehr früh diagnostizieren lassen. Vom 16. bis 19. November präsentieren sie auf der Messe MEDICA in Düsseldorf einen Prototyp (Halle 10, Stand G05).

Die Gelenke des Menschen sind Hightech-Apparate. Sie sind dank einer Knorpelschicht perfekt gelagert und besitzen mit der Gelenkinnenhaut eine Hülle, die permanent einen eigenen Schmierstoff produziert. Bei Menschen aber, die an einer chronischen Arthritis leiden, funktioniert dieser Prozess nicht. Insbesondere bei der rheumatoiden Ausprägung, der häufigsten Form einer chronischen Arthritis, kommt es zu einer Entzündung der Gelenkinnenhaut. Im Laufe der Zeit werden die Knorpel und sogar Knochen der Gelenke angegriffen und geschädigt. Starke Schmerzen und eine Versteifung der Gelenke sind die Folge.


Der Fingerscanner erkennt Arthritis im Frühstadium.

© Fraunhofer IBMT/Bernd Müller

Heilen lässt sich diese Krankheit nicht. Aber sofern sie im Frühstadium erkannt wird, kann man sie mit Medikamenten gut in Schach halten. Doch mit herkömmlicher strahlungsbelastender Röntgenuntersuchung lässt sich die Erkrankung oft erst dann erkennen, wenn sie weit fortgeschritten ist. Eine Alternative ist der Doppler-Ultraschall, der Veränderungen im lokalen Blutfluss erkennt. Ein vermehrter Blutfluss in der entzündeten, verdickten Gelenkinnenhaut ist ein typisches Phänomen der Entzündung. Dieser entsteht sowohl durch eine Weitung vorhandener Blutgefäße als auch durch die Bildung neuer Blutgefäße infolge des Entzündungsprozesses. Zu Beginn der Erkrankung sind die Gefäße aber oft sehr klein, und der Blutfluss ist entsprechend gering, sodass die Erkrankung im Frühstadium trotzdem übersehen werden kann. Die Magnetresonanztomografie wird standardmäßig nicht für die Arthritis-Früherkennung genutzt, da sie aufwendig und teuer ist.

Scanner tastet Gelenke nach Entzündungsherden ab

Um die Früherkennung von Arthritis-Erkrankungen zu verbessern, entwickelt ein europäisches Konsortium aus mehreren Forschungseinrichtungen und Unternehmen derzeit unter der Leitung des Fraunhofer-Instituts für Biomedizinische Technik IBMT im Saarland im Projekt IACOBUS ein alternatives Diagnoseverfahren, in dem Ultraschalltechnik mit neuen Detektionsmethoden kombiniert wird.

Im Detail handelt es sich um einen 3D-Fingerscanner, der die Gelenke nach Entzündungsherden und krankhaften Veränderungen abtastet. »Das hat unter anderem den Vorteil, dass sich die Krankheit bereits im Frühstadium erkennen lässt, da bei vielen Formen von Arthritis die Finger zuerst befallen sind«, sagt Dr. Marc Fournelle, IACOBUS-Projektleiter am IBMT.

Der Scanner arbeitet mit einem optoakustischen Bildgebungsverfahren. Bei dieser Methode wird der Finger mit extrem kurzen Laserlichtpulsen beleuchtet. Die Absorption der kurzen Lichtpulse führt im Gewebe zu einer minimalen Erwärmung, die eine minimale Ausdehnung des Gewebes bewirkt.

Die Ausdehnung wiederum führt zu schwachen Druckpulsen, die der Scanner, wie bei einem Ultraschallverfahren, mit einem Schallwandler registriert. Aus dem Muster der Druckpulse kann das Gerät sehr genau herauslesen, wo sich eine Entzündung entwickelt. Um die Diagnose weiter zu verfeinern, wird das optoakustische Verfahren durch ein Hyperspectral-Imaging-System ergänzt.

In diesem Fall wird der Finger mit starkem Weißlicht durchleuchtet. Entzündetes Gewebe absorbiert bestimmte Wellenlängen. Analysiert man das zurückgestreute Licht Wellenlänge für Wellenlänge, lässt sich erkennen, ob eine Erkrankung vorliegt.

Da die beiden Verfahren vor allem das Weichgewebe und insbesondere die Blutgefäße abbilden, bietet das System zusätzlich ein Ultraschallbild, das ebenfalls mit dem Schallwandler des Scanners erzeugt wird.

»Der Ultraschall bildet, wie gewohnt, auch das Weichgewebe wie zum Beispiel Muskeln oder die Gelenkkapsel sowie den Knochen ab, sodass unser Scanner dem Arzt das bekannte Bild liefert, an dem er sich orientieren kann«, sagt Fournelle. Das Ultraschallbild wird dann mit den Daten des Hyperspectral-Imaging und des optoakustischen Verfahrens kombiniert, sodass deutlich zu sehen ist, wo sich die Entzündung befindet.

An dem von der Europäischen Kommission geförderten Projekt IACOBUS sind folgende Partner beteiligt: EKSPLA UAB (Litauen), Fraunhofer-Institut für Biomedizinische Technik IBMT in Sulzbach und St. Ingbert, Justus-Liebig Universität Gießen, Norsk Elektro Optikk AS (Norwegen), Norwegian University of Science and Technology, Trondheim (Norwegen), Vermon SA (Frankreich), tp21 GmbH (Berlin).

Weitere Informationen:

http://www.fraunhofer.de/de/presse/presseinformationen/2015/November/licht-spuer...

Annette Maurer | Fraunhofer-Institut für Biomedizinische Technik IBMT

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Reinigungsroboter saugt, wischt und leert Papierkörbe - Messe CMS – Cleaning Management Services
19.09.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht HEIDENHAIN auf der interlift 2019: Messgeräte für den Aufzug der Zukunft
18.09.2019 | DR. JOHANNES HEIDENHAIN GmbH

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics