Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laseroptisches Durchflussnormal für Heißwasser

28.04.2016

PTB stellt auf der Sensor + Test ein laseroptisches Normal zur Volumenstrommessung bei hohen Drücken und Temperaturen vor

In Wärmekraftwerken kommt es darauf an, das Volumen des heißen Wassers möglichst schnell und exakt zu bestimmen. Für die Kalibrierung der entsprechenden Messgeräte vor Ort, also während des laufenden Betriebes, hat die Physikalisch-Technische Bundesanstalt (PTB) ein laseroptisches Normal entwickelt, das auf der Laser-Doppler-Anemometrie (LDA) beruht.


Konstruktionszeichnung des neuen Normals mit simulierter axialer Geschwindigkeitsverteilung in einer Venturidüse.

(Abb.: PTB)

Es ermöglicht weltweit erstmalig rückgeführte Volumenstrommessungen bei Temperaturen bis zu 230 °C und Drücken bis zu 40 bar. Die PTB stellt ihr neues Normal zusammen mit der numerischen Strömungssimulation von Strömungsprofilen zur Reduzierung der Messunsicherheit von Durchflussmessgeräten, Computational Fluid Dynamics (CFD), vom 10. bis 12. Mai auf der Messtechnikmesse Sensor + Test in Nürnberg vor (Halle 5, Stand 433).

Im Unterschied zu allen anderen Kalibriermethoden für Prozessmessgeräte kann das in der PTB entwickelte laseroptische Normal direkt vor Ort eingesetzt werden, ohne die zu kalibrierenden Prozessmessgeräte demontieren zu müssen. Die Kalibrierung erfolgt also unter den tatsächlichen Messbedingungen. Einflüsse wie z. B. thermische, installationsbedingte oder auch Drifteffekte (Fouling) werden dabei berücksichtigt.

Bei der neuen, laseroptischen Messmethode wird mithilfe der Laser-Doppler-Anemometrie das Geschwindigkeitsprofil im Rohr vollflächig erfasst. Anschließend wird über die Integration des Geschwindigkeitsprofils der Durchfluss ermittelt. Die Laser-Doppler-Anemometrie ist ein anerkanntes Normalmessverfahren, das auf die SI-Einheiten Meter und Sekunde rückgeführt ist, genauso wie gravimetrische oder volumetrische Verfahren auch. Im Gegensatz zu diesen beiden Methoden unterliegt sie jedoch keinerlei Einschränkungen in Bezug auf Temperatur, Druck oder Aggregatzustand des Mediums.

Durch die vollständige Erfassung des Geschwindigkeitsprofils ist das neue, laseroptische Normalmessverfahren unabhängig von der Zuströmung. Mögliche Asymmetrien oder ein etwaiger Drall der Strömung haben keinen Einfluss auf die Messung. Weiterhin ist das Verfahren unabhängig von Temperatur und Druck in der Strömung, da alle damit verbundenen Effekte (z. B. die thermische Ausdehnung) bei der Messung verfahrensbedingt automatisch berücksichtigt werden. Die Messunsicherheit des neuen Verfahrens beträgt derzeit weniger als 0,4 %. Eine weitere Reduzierung ist möglich.

Zur Reduzierung der Messunsicherheit werden die experimentellen Untersuchungen durch numerische Strömungssimulationen begleitet. Mit der Methode der Computational Fluid Dynamics (CFD) kann das Strömungsprofil am Einbauort eines Durchflusssensors simuliert werden. So lässt sich der Einfluss verschiedenster Einbaukonfigurationen (die das Strömungsprofil ggf. stören), modellieren und schließlich bei der Berechnung der Messunsicherheit berücksichtigen. Mithilfe einer weltweit einmaligen Kombination aus exakt bekannten Randbedingungen (Durchfluss, Temperatur und Geometrie) sowie präziser optischer Geschwindigkeitsmessung (LDA und PIV, Particle Image Velocimetry) lässt sich in der PTB das Ergebnis der Simulation metrologisch abgesichert validieren.
es/ptb

Ansprechpartner:

Andreas Weissenbrunner, PTB-Arbeitsgruppe 7.52 Neue Verfahren der Wärmemengenmessung, Telefon (030)3481-7229, E-Mail: andreas.weissenbrunner@ptb.de

Markus Juling, PTB-Arbeitsgruppe 7.52 Neue Verfahren der Wärmemengenmessung,
Telefon (030)3481- 7815, E-Mail: markus.juling@ptb.de

Dipl.-Journ. Erika Schow | Physikalisch-Technische Bundesanstalt (PTB)
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien
11.10.2019 | IVAM Fachverband für Mikrotechnik

nachricht Fraunhofer-Leitprojekt futureAM auf der formnext: Metall AM vor dem Durchbruch
08.10.2019 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics