Kupfer und Aluminium, eine feste Verbindung – Fraunhofer IWS Dresden auf der Lasermesse 2011

Leichter und billiger als Kupfer ist Aluminium, das ebenfalls sehr gute elektrische Eigenschaften besitzt. Beide Materialien fachgerecht und langlebig miteinander zu verbinden, dieser Aufgabe stellt sich das Fraunhofer IWS Dresden. Einige Lösungsvorschläge präsentiert das Institut auf der Lasermesse vom 23. – 26. Mai 2011 in der Halle C2, Stand 330. Eine Vielzahl der in Verbindung mit Elektromobilität entstehenden fügetechnischen Fragestellungen können damit gelöst werden.

Lösung 1: Laserstrahlschweißen

Laserstrahlschweißen steht für effiziente eigenschafts- und gewichtsoptimierte Fügeverbindungen. Eine Vielzahl unterschiedlicher Werkstoffe und Werkstoff-kombinationen ist bereits mit dem Laser schweißbar, z.B. Aluminium-Stahl oder auch Gusseisen-Einsatzstahl. Die Forscher des Fraunhofer-Institutes für Werkstoff- und Strahltechnik IWS Dresden haben jetzt eine Technologie entwickelt, mit der auch Mischverbindungen wie Aluminium-Kupfer, Aluminium-Magnesium oder Edelstahl-Kupfer mit deutlich besserer Qualität lasergeschweißt werden können.

Die Verbesserung resultiert aus dem Einsatz eines hochdynamischen 2D-Scanners mit hohen Ablenkfrequenzen (bis maximal 2,5 kHz). Das System und eine Reihe von technologischen Parametern für unterschiedliche Werkstoffkombination wurden im BMBF-Verbundprojekt WELDIMA (1) erarbeitet.

Die hochdynamische Strahlablenkung und die laterale Positionierung des La-serstrahles zum Fügestoß ermöglichen eine gezielte Beeinflussung des Mi-schungsverhältnisses im Schweißgut. In Verbindung mit strukturanalytischen Untersuchungen kann die Breite des in der Schweißnaht erzeugten Phasen-saums mit ungewünschten intermetallischen Verbindungen gezielt eingestellt werden. Je kleiner der intermetallische Phasensaum ausfällt, umso geringer ist die Reduzierung der Zugfestigkeit der Schweißverbindung. Für die am IWS mit hochdynamischer Strahlablenkung geschweißten Mischverbindungen aus Aluminium-Kupfer wurden für den Phasensaum Werte kleiner als 10 µm gemessen. Die Zugfestigkeit der Mischverbindung erreicht die gleichen Werte wie die artgleiche Verbindung Aluminium-Aluminium. Sie liegt immerhin bei 70% des unbeeinflussten Grundwerkstoffes.

(1) Dieses Forschungs- und Entwicklungsprojekt wird / wurde mit Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) gefördert und vom Projektträger VDI Technologiezentrum GmbH betreut. Das Projekt ist Teil der Förderinitiative „MABRILAS“ im Bereich der Optischen Technologien. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.

WELDIMA – Untersuchungen zum Schweißen von Mischverbindungen mit brillanten Laserstrahlquellen

Das Ziel des Vorhabens besteht in der Ermittlung und Erprobung verfahrens- und systemtechnischer Voraussetzungen zum qualitätsgerechten und effektiven Laserstrahlschweißen von wirtschaftlich bedeutenden, bisher nicht oder nur sehr eingeschränkt schweißbaren Werkstoffkombinationen und Mischverbindungen mittels Festkörperlasern höchster Strahlqualität.

Lösung 2: Laserinduktionswalzplattieren

Die Herstellung stoffschlüssiger Kontakte aus Al-Cu für das Packaging von Lithium-Ionen-Zellen ist ein Schwerpunkt des Forschungsprojektes DeLIZ (2). Die Dresdner Forscher arbeiten an der Qualifizierung eines neuen Laserwalzplattierprozesses für den industriellen Einsatz. Dieser Prozess vereint jeweils die Vorteile des Kalt- und Warmwalzplattierens und ermöglicht eine großflächige stoffschlüssige Verbindung von Bändern aus Aluminium und Kupfer.

Während des Prozesses erhitzt ein Laserstrahl die beiden zu fügenden inneren Oberflächen der Bänder, die unmittelbar vorher induktiv vorgewärmt wurden. Dadurch lokalisiert sich die Verformung im Walzspalt weitgehend auf das (sehr begrenzte) hoch erwärmte Volumen. Unter dem Einfluss des Walzendrucks bildet sich zwischen beiden Bändern ein gleichmäßiger, fehler- und grenzflächenfreier Gefügeübergang aus. Die analytischen Untersuchungen der Fügezone zeigen, dass sich die Ausbildung der Fügezone durch die Wahl der Prozessparameter erheblich beeinflussen lässt. Die für stoffschlüssige Alumini-um-Kupfer-Verbindungen typischen intermetallischen Phasen können kom-plett vermieden werden. Das bei Walzgeschwindigkeiten bis 8 m min-1 plattierte Band lässt sich im walzplattierten Zustand gut verformen und kann di-rekt weiterverarbeitet werden. Die ermittelten Scherfestigkeiten des Verbun-des liegen bei 30 – 40 MPa.

(2) Dieses Forschungs- und Entwicklungsprojekt wird / wurde mit Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) im Rahmenkonzept „Forschung für die Produktion von morgen“ gefördert und vom Projektträger Karlsruhe (PTKA) betreut. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.

DeLIZ – Produktionstechnisches Demonstrationszentrum für Lithium-Ionen-Zellen

In dem 2010 gestarteten Verbundforschungsprojekt DeLIZ widmen sich Forscher des Fraunhofer IWS Dresden, der TU Dresden und der TU München produktionstechnischen Fragestellungen entlang der Prozesskette zur Fertigung von Lithium-Ionen-Zellen. Neue Lösungsansätze für eine kostengünstige Großserienfertigung, prozessübergreifende Qualitätssicherungssysteme und innovative produktionstechnische Lösungen entlang der gesamten Prozesskette stehen im Fokus der Forscher.

Besuchen Sie uns auf der Messe LASER World of PHOTONICS
(23. – 26.5.2011) auf dem Fraunhofer-Gemeinschaftsstand in Halle C2, Stand 330.
Ihr Ansprechpartner für weitere Informationen:
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden
01277 Dresden, Winterbergstr. 28
Presse und Öffentlichkeitsarbeit
Dr. Ralf Jäckel
Telefon: (0351) 83391 3444
Telefax: (0351) 83391 3300
E-mail: ralf.jaeckel@iws.fraunhofer.de

Media Contact

Dr. Ralf Jaeckel Fraunhofer-Institut

Weitere Informationen:

http://www.iws.fraunhofer.de

Alle Nachrichten aus der Kategorie: Messenachrichten

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer