Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

K 2016: Von OLED-Verkapselung bis Plagiatschutz

29.09.2016

Beim Auftrag ultradünner transparenter Lacke auf transparente Folienbänder können Defekte in der Schicht erstmals direkt während des Beschichtungsprozesses sichtbar gemacht werden. Möglich wird dies durch ein inline-Detektionssystem, das mit Fluoreszenzfarbstoffen arbeitet. Drei Institute der Fraunhofer-Allianz Polymere Oberflächen POLO® haben das Verfahren entwickelt. Hightech-Anwendungen wie Ultrabarrierefolien für OLEDs können davon profitieren, denn die Inline-Prozesskontrolle verhindert Produktionsfehler und erspart Reklamationen. Das Farbstoff/Kamera-System kann zudem die Echtheit von fluoreszenzmarkierten Materialien belegen. Auf der Kunststoffmesse K wird das System vorgestellt.

K 2016 | Düsseldorf | 19. bis 26. Oktober | Halle 07 | Stand SC01


Künftig können Verkapselungsfolien für flexibel organische Leuchtdioden (OLED) ohne Defekte hergestellt werden.

© Fraunhofer IAP, Foto: Armin Okulla


Die Ultrabarrierefolie der Fraunhofer-Allianz POLO® muss für die Verkapselung organischer Leuchtdioden oder Solarzellen allerhöchste Anforderungen erfüllen: Sie schützt die empfindlichen organischen Materialien über Jahre vor Sauerstoff und Wasserdampf.

Die Folie soll dabei dünn und transparent sein. Eine für die Barriereeigenschaften wichtige Schicht – ein extrem dünner Lack – besteht aus einem Hybridpolymer (ORMOCER®) des Fraunhofer ISC. Die Lackschicht muss an allen Stellen exakt gleichmäßig dünn sein – und unter einem Mikrometer liegen. Die Fraunhofer-Institute für Angewandte Polymerforschung IAP in Potsdam, für Verfahrenstechnik und Verpackungen IVV in Freising und für Silicatforschung ISC in Würzburg haben dafür ein inline-Detektionssystem entwickelt.

Live ermittelt: Schichtdickenverteilung und Härtungsgrad

Der transparente Barrierelack besteht aus dem Hybridpolymer ORMOCER® des Fraunhofer ISC. Er wird im Rolle-zu-Rolle-Verfahren auf eine transparente Folie aufgetragen. »Beide Materialien, Lack und Folie, haben einen sehr ähnlichen Brechungsindex. Das macht die Bestimmung der Schichtdicke zu einer großen Herausforderung, insbesondere weil der Lack extrem dünn aufgetragen wird«, erklärt Dr. Andreas Holländer, Sprecher der Fraunhofer-Allianz POLO® und Oberflächenspezialist am Fraunhofer IAP.

Die Forscher haben dafür eine clevere Lösung gefunden: Sie mischen eine kleine Menge eines fluoreszierenden organischen Farbstoffs in den ORMOCER®-Lack. Seine Konzentration entspricht in etwa 0,001 Prozent. Der Farbstoff absorbiert Licht einer bestimmten Wellenlänge und sendet Licht einer längeren Wellenlänge, also einer anderen Farbe, aus. Bereits geringste Konzentrationen des Farbstoffes können detektiert werden. Bei einigen Fluoreszenzfarbstoffen können die benachbarten Moleküle die Intensität oder die Wellenlänge des ausgesandten Lichts beeinflussen. Beispielsweise führt die Aushärtung der Lackschicht zu einem stärkeren Fluoreszenzsignal. Werden solche Farbstoffe kombiniert, können Informationen über die Dickenverteilung und den Härtungsgrad der Schicht gewonnen werden.

Niedrigere Kosten durch perfekte Schichten

Für das Auftragen des ORMOCER®-Lacks wurde das Detektionssystem in den Rolle-zu-Rolle-Prozess am Fraunhofer IVV zur Herstellung der Ultrabarrierefolie eingebunden. Zwei Typen monochromatischer LED-Lampen bestrahlen den Lack. Zwei kommerziell erhältliche Digitalkameras messen die ausgestrahlte Fluoreszenz zweier Farbstoffe im Lack. »Die Farbstoffe bestimmen z. B. die Art der Lichtquelle oder der Filter«, erklärt Holländer, der am Fraunhofer IAP das Farbstoff/Kamera-System entwickelt hat.

»Die Farbstoffe müssen zudem im Beschichtungssystem löslich sein. Ihre optischen Eigenschaften dürfen sich nicht mit denen der Beschichtung selbst überlagern«, so Holländer. Mit Hilfe der elektronischen Bildgebung werden Defekte in der Lackschicht erstmals direkt sichtbar und der Beschichtungsprozess kann sofort und präzise angepasst werden. Solche Mängel zeigten sich bisher erst während der Anwendung, z. B. durch eine zu kurze Lebensdauer der OLEDs. Ein Imageschaden einerseits und andererseits auch zusätzliche Kosten durch Rückrufaktionen oder Reklamationen können mit dem nun zur Verfügung stehenden System vermieden werden.

Chemisch nicht analysierbar: Materialien mit Fluoreszenz kennzeichnen

Da die Farbstoffe in so geringen Konzentrationen zugesetzt werden, dass sie chemisch nicht analysierbar sind, setzen die Forscher das Prinzip auch für den Plagiatschutz von Materialien ein. »Wenn man nicht herausfinden kann, welche Farbstoffe enthalten sind, kann man die Markierung auch nicht so leicht kopieren«, so Holländer. »Zudem gibt es einige Tausend kommerziell verfügbare Fluoreszenzfarbstoffe, die miteinander kombiniert werden können.

Daraus ergeben sich unzählig viele mögliche Varianten. Werden Massenkunststoffe oder auch hochwertige Materialien wie Schmierstoffe damit markiert, können diese über eine Art eigenen Fluoreszenz-Code auf ihre Echtheit geprüft werden«, erklärt der IAP-Wissenschaftler. Dank seines einfachen Aufbaus kann das fluoreszenzbasierte Inline-Bildgebungssystem leicht in bestehende Prozesse integriert werden. Künftig soll das System auch kommerziell verfügbar sein.

Auf der K 2016, der führenden Messe für die Kunststoff- und Kautschukindustrie, stellen die Forscher die Entwicklung vom 19. bis 26. Oktober in Düsseldorf in Halle 07 auf dem Fraunhofer-Gemeinschaftsstand SC01 vor.

Die Fraunhofer-Allianz Polymere Oberflächen POLO®

Die Fraunhofer-Allianz Polymere Oberflächen POLO® bündelt die Einzelkompetenzen von sieben Fraunhofer-Instituten und entwickelt innovative Konzepte, Technologien und Materialien für die Funktionalisierung von polymeren Oberflächen. Die POLO®-Institute verfügen über umfangreiche Methoden zur Charakterisierung und Analytik von Polymermaterialien, Oberflächen, Grenzflächen und dünnen Schichten. Die technischen Anlagen zur Oberflächenbeschichtung und -modifizierung zählen zu den führenden Ausstattungen weltweit.

Fraunhofer POLO® ist ein kompetenter Partner für Hersteller, Verarbeiter und Anwender von Kunststoffen.

Institute:
- Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP, Dresden
- Fraunhofer-Institute für Angewandte Polymerforschung IAP in Potsdam
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM, Bremen
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Stuttgart
- Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, Stuttgart
- Fraunhofer-Institut für Silicatforschung ISC, Würzburg
- Fraunhofer-Institut für Verfahrenstechnik und Verpackung IVV, Freising

Weitere Informationen:

http://www.polo.fraunhofer.de

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Medica 2019: Pharmaceuticals - new process quickly shows efficacy
12.11.2019 | Technische Universität Kaiserslautern

nachricht Medica 2019: Arteriosklerose – neue Techniken helfen, richtigen Katheter und Lage von Gefäßverengung zu finden
11.11.2019 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics