Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

JEC 2016: Leichtbauteile schneller und energieeffizienter fertigen

01.03.2016

Kunststoff mit Infrarotstrahlung im Werkzeug schmelzen

Beim Konsolidieren von kohlenstofffaserverstärkten Kunststoffen (CFK) verbinden sich Einzelschichten aus Fasern und Kunststoff unter Druck und hoher Temperatur zu einer homogenen Platte. Fraunhofer-Forscher haben ein Verfahren entwickelt, das schnell und energieeffizient ist und sich auch für kleinere Stückzahlen sowie Hochtemperaturkunststoffe eignet: Sie bestrahlen CFK unter Vakuum direkt mit Infrarotstrahlung.


© Foto Fraunhofer ICT

Kohlenstofffasern und erhitzter Kunststoff verbinden sich unter Druck zu einer homogenen CFK-Platte. Mit Infrarotstrahlung unter Vakuum geht das schnell und energieeffizient.

In heutigen Anlagen zur CFK-Fertigung kommen häufig große, kostenintensive Anlagen zum Einsatz. Sie pressen den aufgeschmolzenen Kunststoff zwischen Verstärkungsfasern aus Kohlenstoff oder Glas. Der Kunststoff wird dabei nur indirekt – über die massiven Presswerkzeuge – erhitzt. Die Werkzeuge müssen bewegt, bei variothermer Prozessführung zyklisch aufgeheizt und wieder abgekühlt werden.

Dabei wird prozessabhängig viel Energie und Zeit benötigt. Durch die zum Teil hohen Investitionskosten für Pressen und andere Großanlagen sind kleinere und mittlere Fertigungszahlen häufig nicht rentabel. Doch hierfür gibt es eine Alternative: Forscher des Fraunhofer-Instituts für Chemische Technologie ICT in Pfinztal erhitzen CFK direkt unter Vakuum mit Infrarotstrahlung.

Die Energie wirkt dort, wo sie gebraucht wird. Sofort. Für die Werkzeugwand fanden die Forscher ein Material, das die Infrarotstrahlung im gewünschten Wellenlängenbereich durchlässt und gleichzeitig fast keine eigene Wärmedehnung aufweist. Üblicherweise dauern Vakuum-basierte variotherme Fertigungsprozesse je nach Dicke des Bauteils zwischen 30 Minuten und mehreren Stunden. Mit dem Ansatz des ICT geht das unter 60 Sekunden.

»Unser Verfahren ist schneller, wirtschaftlicher und energieeffizienter als der aktuelle Stand der Technik«, sagt Sebastian Baumgärtner, Maschinenbauingenieur am baden-württembergischen Institut. Die Verarbeitung im Vakuum schont das Material. Der Kunststoff oxidiert nicht wie in offenen Verfahren. Eingeschlossene Luft und mögliche Abgase werden abgesaugt. Der Prozess läuft sehr stabil und ist einfach zu nutzen. »Um CFK zu erhitzen eignen sich bei unserem Ansatz alle elektromagnetischen Strahlen, also auch Mikrowellenstrahlen«, erklärt Baumgärtner. Die Industrie spart Energie, Kosten, Verbrauchsmaterialien und kann schneller fertigen. Das Verfahren ist sowohl für Groß- als auch für Kleinserien geeignet. »Es profitieren insbesondere kleinere und mittelgroße Unternehmen, die sich keine teure Anlagentechnik leisten wollen«, präzisiert Baumgärtner.

Exponat auf der JEC

Auf einer Testanlage fertigen die Forscher mit dem Verfahren 40 x 40 Zentimeter große CFK-Platten. Ähnlich große Teile befinden sich bereits in Sportartikeln oder Automobilteilen. »Unsere Anlage passt in einen normalen Fertigungsbereich«, veranschaulicht Baumgärtner. Im Gegensatz zu großen Pressen fallen Ober- und Unterbau sowie ein spezielles Fundament weg. Die Wissenschaftler stellen das Projekt auf der Fachmesse für Verbundwerkstoffe JEC vom 8. bis 10. März in Paris vor (Pavillion 5A, Stand E70).

Die Anlage fertigt verzugsfreie Platten. »Das ist eine große Herausforderung beim Fertigen von CFK. Wir heizen und kühlen symmetrisch, nutzen eine wärmedehnungsfreie Werkzeugwand und arbeiten mit relativ geringem Prozessdruck, um den ungewollten Quetschfluss zu vermeiden«, sagt Baumgärtner. Durch die glatte Oberfläche der Werkzeugwand entsteht zudem eine nahezu spiegelnde CFK-Platten­­­ober­­fläche. Das ist im finalen Bauteil insbesondere für Anwendungen im Sichtbereich sehr vorteilhaft.

Der Kunststoff erwärmt sich sofort nach Anschalten der Infrarotstrahler. Wieviel Energie genau eingespart wird, können die Wissenschaftler noch nicht sagen. »Noch fehlen uns die exakten Vergleichszahlen. Der Effekt wird aber deutlich sein, da keine großen thermischen Massen aufgeheizt und wieder abgekühlt werden müssen, wie das beim Pressverfahren der Fall ist«, ergänzt der Forscher.

In Autos, Flugzeugen und Sportartikeln

Carbonfasern sind dünner als ein menschliches Haar. Als Kunststoffe für CFK dienen in neuen Entwicklungen häufig Thermoplaste. Sie sind mehrfach aufschmelzbar und können vollständig wiederverwertet werden. Fasern und Kunststoff werden Schicht für Schicht übereinander gestapelt bis die gewünschte Bauteildicke erreicht ist. Hitze und Druck bringen Fasern und geschmolzenen Kunststoff zusammen. Besondere Herausforderung ist es, die Platten ohne Fehlstellen und Lufteinschlüsse zu fertigen, ohne dass die Fasern verschoben werden. Unidirektionales CFK ist in Faserrichtung steif und senkrecht dazu flexibel. So lassen sich über eine spezifische Anordnung der Lagen Bauteile mit individuell einstellbaren Eigenschaften fertigen. CFK ist nicht mehr nur für Raumfahrt oder Formel 1 interessant. Heute wird es in Autos, Flugzeugen und Sportartikeln eingesetzt.

Kontakt
Dr. Stefan Tröster

Fraunhofer-Institut für Chemische Technologie ICT
Joseph-von-Fraunhofer-Straße 7
76327 Pfinztal

Telefon +49 721 4640-392

E-Mail senden

Dr. Stefan Tröster | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2016/maerz/leichtbauteile-schneller-und-energieeffizienter-fertigen.html

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Wasserstoff – Energieträger der Zukunft?
20.05.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Sensor+Test 2019: Sanftere künstliche Beatmung
16.05.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Direkte Abbildung von Riesenmolekülen

24.05.2019 | Physik Astronomie

Antibiotika und ihre Systembiologie

24.05.2019 | Biowissenschaften Chemie

Kinderradiologie: Auf dem Weg zur nächsten technischen Revolution

24.05.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics