Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grüne Technologien für die Luftfahrt

09.07.2012
Ökologisch und ökonomisch: Das Fraunhofer IBP präsentiert sich auf der Farnborough International Airshow in England

Im Rahmen des europäischen Projekts »Clean Sky« hat sich das Fraunhofer IBP gemeinsam mit weiteren Fraunhofer-Instituten sowie Partnern aus der Luftfahrtindustrie ein bedeutendes Ziel gesetzt.


Das Fraunhofer IBP verfügt an seinem Standort in Holzkirchen über eine weltweit einmalige Testeinrichtung, die »Flight Test Facility«. Schon bald kommt am Standort Holzkirchen ein ebenfalls einmaliger thermischer Prüfstand, die Ground Thermal Test Bench, hinzu. (© Fraunhofer IBP)


Die „Ground Thermal Test Bench“ dient zur Simulation und Prüfung von Flugzeugsystemen unter thermischen Gesichtspunkten. (© Fraunhofer IBP)

Die Forscher wollen mit ihrer Arbeit dazu beitragen, die CO2- und Stickoxidemissionen sowie die Lärmbelastung in den kommenden Jahren deutlich zu senken. Zentrale Frage ist hier die nach der »Ökolonomie«: Wie kann der Flugverkehr stetig ökologischer werden, dabei aber auch ökonomisch bleiben? Neben der Schadstoff- und Lärmreduktion geht es im Wesentlichen um Energieeffizienz und einen nachhaltigen Lebenszyklus. Auf der Farnborough International Airshow in England zeigt das Fraunhofer IBP von 9. bis 13. Juli (Stand C 2, Halle 2) seine Antworten auf diese Frage. Das Fliegen ist im Laufe der vergangenen Jahrzehnte zu einem essenziellen gesellschaftlichen Element geworden. Die Luftfahrt bringt nicht nur Menschen zusammen, sondern ermöglicht weltweiten Handel und wirtschaftliches Wachstum. Gleichzeitig ist die Industrie sehr sensibel für Umweltbelange wie Luftverschmutzung, Lärm und Klimawandel.

Die Technologieinitiative »Clean Sky« ist mit 1,6 Milliarden Euro das größte EU-Projekt für Nachhaltigkeit und Wettbewerbsfähigkeit der Luftfahrt in Europa. Ziel ist die Steigerung der Wettbewerbsfähigkeit der europäischen Luftfahrtindustrie bei gleichzeitiger Abnahme der Umweltbelastung infolge des steigenden Flugaufkommens. Bis 2020 sollen sich die CO2-Emissionen um 50 Prozent, die Stickoxidemissionen um 80 Prozent, die Lärmbelästigung um 50 Prozent senken und ein nachhaltiger Lebenszyklus für alle Komponenten des Luftverkehrs einführen lassen.

»Das Fliegen und damit die Luftfahrt gewinnt in unserer globalisierten Gesellschaft immer mehr an Bedeutung. Umso wichtiger ist es, sowohl der Ökologie als auch der Ökonomie, also der Ökolonomie, Rechnung zu tragen. Unter dem Gesichtspunkt forscht auch das Fraunhofer-Institut für Bauphysik an neuen Architekturen für Flugzeuge, damit diese umweltfreundlicher werden, ihren Passagieren aber gleichzeitig ein Maximum an Komfort und Leistung bieten«, sagt John Cullen Simpson, Vorsitzender der Fraunhofer Aviation Group.

Testflüge am Boden am Standort Holzkirchen

An seinem Standort in Holzkirchen verfügt das Fraunhofer IBP über eine weltweit einmalige Testeinrichtung, die „Flight Test Facility“ (FTF). In einer Niederdruckkammer befindet sich ein originales Flugzeugsegment mit rund 15 Meter Länge und Platz für bis zu 80 Probanden. Neben Untersuchungen zum Kabinenklima wird auch das Flugzeug als Gesamtsystem erforscht. Dabei werden beispielsweise Cockpit, Passagierkabine, Avionik und Frachtraum unter energetischen Aspekten und Nutzungsanforderungen betrachtet. Zudem ist das Fluglabor vor kurzem durch eine weitere einzigartige Testvorrichtung ergänzt worden. Die „Ground Thermal Test Bench“, ein thermischer Prüfstand, eröffnet den Wissenschaftlern und ihren Partnern aus der Industrie zusätzliche Forschungsfelder. Vor dem Hintergrund der „all-electric“-Philosophie, das heißt dem zunehmenden Einsatz von Elektronik statt Hydraulik zur Steuerung sämtlicher Funktionen, sowie der Verwendung leichter Materialien in der Entwicklung neuer Flugzeuge spielt der Prüfstand eine wichtige Rolle bei der Simulation und Prüfung neuer Systeme unter thermischen Gesichtspunkten. Auch hier ist ein originaler Flugzeugrumpf im Einsatz, der – in drei typische Bereiche des Flugzeugs (Cockpit, Kabine und Heck) aufgeteilt – verschiedenste thermische Messungen ermöglicht. Ziel ist es, innovative Energiemanagementkonzepte zu entwickeln, zu validieren und schließlich zu demonstrieren.

Mithilfe der Ökobilanzierung zum ökologisch gerechten Design

Nachhaltigkeit spielt auch im Bereich der Luftfahrt eine zentrale Rolle. Diverse Studien zeigen, dass sowohl das Transport- als auch das Passagieraufkommen in den nächsten Jahren stark ansteigen werden. Um dennoch die Umweltwirkung zu reduzieren, ist es notwendig, neue und ökologischere Entwicklungen zu untersuchen sowie bestehende Prozesse zu optimieren. Aufbauend auf dem Lebenszyklusgedanken arbeitet das Fraunhofer IBP daher mit der Methode der Ökobilanzierung. Für die Beurteilung der Nachhaltigkeit sowie der Identifikation der systemrelevanten Einflussgrößen und Parameter eines Flugzeuges werden seine drei Lebenszyklusphasen (Entwicklung und Herstellung, Nutzung sowie Recycling bzw. Entsorgung) analysiert. Anwendungsfelder und Themenschwerpunkte finden sich in der Prozessanalyse und -optimierung, der Bewertung von Recyclingkonzepten, Zukunftstechnologien sowie der Bilanzierung von Gesamtflugzeugen und -systemen. Basierend auf den Ergebnissen der Ökobilanz lassen sich zudem zielgerichtete Maßnahmen und Strategien zum ökologisch gerechten Design der betrachteten Systeme ableiten.

Mehr als nur Abfall: Am Ende des Lebenszyklus

Der Wiederverwertungsgedanke ist auch zentrales Element der Arbeit im Betonlabor des Fraunhofer IBP. Das Recycling ist eines der gravierenden Probleme in der Luftfahrtindustrie – bisher lassen sich ausrangierte Maschinen nämlich nur sehr schwer entsorgen. Deshalb arbeiten die Wissenschaftler am Fraunhofer IBP derzeit an Lösungen zur Wiederverwertung von Flugzeugteilen und ihren Komponenten. So könnte sich Aluminiumabfall aus ausgemusterten Flugzeugen in Zukunft beispielsweise in antimikrobiell beschichteten Pflastersteinen wiederfinden. Derzeit wird hauptsächlich Kupferschlacke verwendet, um ungewollten Bewuchs auf Gehwegen, Einfahrten etc. zu verhindern. Ebenso gute Ergebnisse erzielt man mit Aluminiumabfall aus Flugzeugen, der dafür mit Säure vorbehandelt wird. Das dabei gewonnene Aluminiumfluoridhydrat wird gemeinsam mit Zement zur Beschichtung von Pflastersteinen verwendet und hat bisherigen Untersuchungen zufolge bereits in einer Konzentration von 0,1% sehr gute antimikrobielle Eigenschaften.

Neben Aluminiumschrott kommt in Zukunft auch verstärkt ein weiteres Abfallprodukt in der Luftfahrtindustrie hinzu: Im Flugzeugbau werden Metalle zunehmend durch Karbonfaser verstärkte Kunststoffe (CFKs) ersetzt, da sie bei geringerem Gewicht vergleichbare mechanische Eigenschaften aufweisen. Für ihre Wiederverwertung gibt es jedoch bislang noch keine wirtschaftlichen Lösungen. Derzeit werden CFKs entweder mit energieaufwendigen Prozessen, wie Hochtemperaturpyrolyse behandelt, oder mechanisch zerkleinert. Doch nur bei ersterem Verfahren ist die Wiedergewinnung der Fasern möglich. Die Wissenschaftler des Fraunhofer IBP forschen deshalb an der Weiterentwicklung eines Verfahrens, das ursprünglich aus dem Bergbau kommt.

Die elektrodynamische Fragmentierung wird zum Beispiel zur Zerkleinerung von hochreinem Quarz für die Silizium-Wafer Industrie eingesetzt. Das Verfahren beruht auf dem Prinzip, dass ultrakurze Unterwasserimpulse Festkörper selektiv fragmentieren, indem die Blitzentladungen bevorzugt entlang von Phasengrenzen verlaufen. Ein elektrischer Blitzschlag erzeugt dabei Druckwellen mit einer Sprengwirkung einer TNT-Explosion, wodurch das Verbundmaterial in seine Komponenten zerlegt wird. Die Fasern können so also erhalten bleiben und wiederverwendet werden. Gleichzeitig ist der Energieaufwand deutlich geringer als bei anderen Methoden, die den Fasererhalt ermöglichen. Noch steht das Verfahren in diesem neuen Anwendungsfeld am Anfang, doch arbeiten die Fraunhofer-Forscher intensiv an seiner Weiterentwicklung, um auch die Recycelbarkeit von Karbonfaser verstärkten Kunststoffen und deren Wirtschaftlichkeit voranzutreiben. Denn auch hier steht die Frage der Ökolonomie an vorderster Stelle.

Die Aufgaben des Fraunhofer-Instituts für Bauphysik, IBP konzentrieren sich auf Forschung, Entwicklung, Prüfung, Demonstration und Beratung auf den Gebieten der Bauphysik. Dazu zählen z. B. der Schutz gegen Lärm und Schallschutzmaßnahmen in Gebäuden, die Optimierung der Akustik in Räumen, Maßnahmen zur Steigerung der Energieeffizienz und Optimierung der Lichttechnik, Fragen des Raumklimas, der Hygiene, des Gesundheitsschutzes und der Baustoffemissionen sowie die Aspekte des Wärme-, Feuchte- und Witterungsschutzes, der Bausubstanzerhaltung und der Denkmalpflege. Über eine ganzheitliche Bilanzierung werden Produkte, Prozesse und Dienstleistungen unter ökologischen, sozialen und technischen Gesichtspunkten analysiert, um damit die Nachhaltigkeit, die nachhaltige Optimierung und die Förderung von Innovationsprozessen zu bewerten. Die Forschungsfelder Bauchemie, Baubiologie und Hygiene sowie das Arbeitsgebiet Betontechnologie komplettieren das bauphysikalische Leistungsspektrum des Instituts. Der Standort Kassel verstärkt die traditionellen Aktivitäten auf den Gebieten der rationellen Energieverwendung und bündelt die Entwicklung von anlagentechnischen Komponenten.

Janis Eitner | Fraunhofer-Institut
Weitere Informationen:
http://www.ibp.fraunhofer.de/

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Universität Jena mit innovativer Lasertechnik auf Photonik-Messe in München vertreten
19.06.2019 | Friedrich-Schiller-Universität Jena

nachricht Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen
19.06.2019 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Universität Jena mit innovativer Lasertechnik auf Photonik-Messe in München vertreten

19.06.2019 | Messenachrichten

Meilenstein für starke Zusammenarbeit: Neuer Standort für Rittal und Eplan in Italien

19.06.2019 | Unternehmensmeldung

Katalyse: Hohe Reaktionsraten auch ohne Edelmetalle

19.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics