Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fraunhofer FHR zeigt innovative Beiträge für Radaranwendungen im Automobilbereich auf der IAA

09.09.2019

Das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR beteiligt sich in diesem Jahr erstmals an der Internationalen Automobil-Ausstellung IAA in Frankfurt am Main. Auf dem Gemeinschaftsstand der Fraunhofer-Gesellschaft präsentiert das Institut vom 10.-13. September 2019 seine umfassende Radarexpertise rund um die Automobilität, vom Antennendesign über kognitives Radar und Materialcharakterisierung bis hin zu effizienten Testverfahren mit synthetischen Daten.

Radarsensoren sind wichtige Komponenten für die moderne Automobilität. Nicht zuletzt durch die rasanten Entwicklungen im Bereich des autonomen Fahrens steigen Bedeutung und Anforderungen an diese Sensoren immer weiter.


Kognitives Automobilradar

© Fraunhofer FHR

In Halle 4.1, Stand C12 zeigen die Wissenschaftler des Fraunhofer FHR welche wichtigen Beiträge sie im Zusammenhang mit zukünftigen Entwicklungen auf diesem Gebiet liefern können.

In modernen Personen- und Lastkraftwagen wird zunehmend eine große Anzahl von Systemen verbaut, deren Funktion nur durch die Verwendung einer geeigneten Antenne ermöglicht wird. Diese Systeme dienen u.a. der Kommunikation, der Datenübertragung, der Navigation, der Fernerkundung und letztendlich dem Radio- und Fernsehempfang.

So unterstützen die Wissenschaftler des Fraunhofer FHR bereits seit vielen Jahren große deutsche Automobilzulieferer bei der Entwicklung und Integration von Antennen für immer neue Generationen von Automobilradaren für die gängigen Frequenzbänder bei 24 GHz und zwischen 76 und 81 GHz. Antennen für Funkschlüssel, Mautsysteme und Satellitennavigation sind weitere Beispiele für industrielle Forschungs- und Entwicklungsprojekte.

Ebenso werden im Rahmen des Fraunhofer FHR Messeauftritts die Möglichkeiten des Kognitiven Automobilradars präsentiert. Radare werden immer kleiner und günstiger und ihre softwaregesteuerte Sensorik ermöglicht völlig neue Sensing-Strategien und Signalprozessierungs-Algorithmen, die adaptiv sind und aus Erfahrung lernen können. Damit können sie moderne Fahrerassistenz-Systeme revolutionieren und mit anderen Sensoren den Weg für das autonome Fahren ebnen.

Im Bereich Materialcharakterisierung für Automotive Radar geht es meist um die Optimierung der Durchlässigkeit für Hochfrequenzstrahlung verschiedener Kunststoffbauteile. Diese spielt für eine bestmögliche Systemperformance eine bedeutende Rolle.

Der vermehrte Einsatz von Radaren im Fahrzeug und deren formneutrale Integration an einem aus Radarsicht optimalem Einbauort stellt viele Hersteller von Ausgangmaterialien und Kunststoffteilen vor die Herausforderung, Materialien und Bauteile hinsichtlich ihrer elektromagnetischen Eigenschaften zu charakterisieren und zu optimieren.

Das Fraunhofer FHR unterstützt hier dank des umfangreichen Know-hows in puncto experimentell-messtechnischer Materialcharakterisierung in Kombination mit dem elektromagnetisch-physikalischen Verständnis der Wellenausbreitung in dielektrischen Materialien.

An Radarsensoren für Automobilität und für das autonome Fahren im Besonderen werden durch den Gesetzgeber hohe Anforderungen an Sicherheit und Zuverlässigkeit gestellt. Aktuell werden Sensoren ressourcenaufwändig mit Millionen von Fahrkilometern getestet. Die Experten des Fraunhofer FHR forschen an Softwareanwendungen, um diesen Aufwand zu verringern.

So bietet das Simulationstool GOPOSim eine Lösung zur EM-Simulation dynamischer Verkehrsszenarien. Mit GOPOSim wird am Fraunhofer FHR eine Softwarelösung zur schnellen elektromagnetischen Simulation zeitdynamischer Prozesse entwickelt. So kann beispielsweise die Funktion eines Automobil-Radarsensors ohne zeitaufwendige Testfahrten mit synthetisierten Radardaten getestet werden.

Um die zuverlässige Qualifizierung von Automobilradaren dreht sich alles bei dem Projekt ATRIUM. Mit ATRIUM wird am Fraunhofer FHR ein Radarzielsimulator für das E-Band entwickelt, der eine umfassende Kontrolle der Funktionsfähigkeit von Automobil-Radarsensoren der nächsten Generation ermöglicht. Im Gegensatz zu konventionellen Radarzielsimulatoren wird ATRIUM ein Radar mit komplexen Verkehrsszenarien realitätsnah testen können.

Jens Fiege | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR
Weitere Informationen:
http://www.fhr.fraunhofer.de/

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht IT-Sicherheit „Made in Germany“ für Edge- und Cloud-Infrastrukturen
16.09.2019 | Rittal GmbH & Co. KG

nachricht Der Clou: Metallischer Einleger verhakt sich im faserverstärkten Kunststoff
16.09.2019 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Womit werden wir morgen kühlen?

Wissenschaftler bewerten das Potenzial von Werkstoffen für die magnetische Kühlung

Für das Jahr 2060 erwarten Zukunftsforscher einen Paradigmenwechsel beim globalen Energiekonsum: Erstmals wird die Menschheit mehr Energie zum Kühlen aufwenden...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Meilensteine auf dem Weg zur Atomkern-Uhr

Zwei Forschungsteams gelang es gleichzeitig, den lang gesuchten Kern-Übergang von Thorium zu messen, der extrem präzise Atomkern-Uhren ermöglicht. Die TU Wien ist an beiden beteiligt.

Wenn man die exakteste Uhr der Welt bauen möchte, braucht man einen Taktgeber, der sehr oft und extrem präzise tickt. In einer Atomuhr nutzt man dafür die...

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Technomer 2019 - Kunststofftechniker treffen sich in Chemnitz

16.09.2019 | Veranstaltungen

„Highlights der Physik“ eröffnet

16.09.2019 | Veranstaltungen

Die Digitalisierung verändert die Medizin

13.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Probenhalter für die Proteinkristallographie

16.09.2019 | Biowissenschaften Chemie

Warum die Erdatmosphäre viel Sauerstoff enthält

16.09.2019 | Geowissenschaften

Wissenschaftler erforschen Produktentstehungsprozesse in neuem Innovationslabor

16.09.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics