Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dreidimensionale, transparente Mikrobauteile schneller und effizienter fertigen

08.10.2012
Auf der diesjährigen glasstec vom 23. - 26. Oktober 2012 in Düsseldorf stellt das Fraunhofer-Institut für Lasertechnik ILT auf dem Fraunhofer-Gemeinschaftsstand 15/E25 ein Laserfertigungsverfahren zur Strukturierung transparenter Materialien vor.
Mit diesem Verfahren lassen sich jetzt erstmals auch montierte Bauteile aus transparenten Materialien wie Glas mikrometergenau aus einem Block fertigen. Im Gegensatz zu abtragenden Verfahren zeichnet sich das Selektive Laserinduzierte Ätzen (ISLE) durch eine große Materialeffizienz aus.

Quarzglasröhrchen mit einem Durchmesser von einem Millimeter und einer Wandstärke von neun Mikrometern, Lochfelder mit Bohrungsdurchmessern von 50 Mikrometern, Mikrofluidikbauteile für die medizinische Diagnostik mit Kanälen von weniger als 10 Mikrometern Durchmesser: Die Abmessungen von Bauteilen in der Feinmechanik, der Medizin- und der Messtechnik werden zunehmend kleiner bei gleichzeitig steigender Komplexität.

ISLE-gefertigtes Mikrozahnrad im Größenvergleich.

Bildquelle: Fraunhofer ILT, Aachen/Volker Lannert

Beispielsweise müssen für die Uhrenindustrie sogenannte Uhrensteine präzise gefertigt und anschließend montiert werden. Derzeit werden diese Mikrobauteile von erfahrenen Fachkräften manuell durch Schleifen und Polieren hergestellt und montiert, was einen hohen Zeitaufwand erfordert. Zudem sind abtragende Verfahren stets mit Materialverlust von typischerweise 80% verbunden, was je nach Material einen erheblichen Kostenfaktor darstellt.

Aufgrund der geringen Größe der Mikrobauteile sind transparente, also »farblose«, Materialien für die manuelle Bearbeitung nicht geeignet, da sie für den Facharbeiter nicht gut genug sichtbar sind. In der Regel greifen Hersteller daher auf Rubin zurück, da dieses Material neben der Materialeigenschaft der großen Härte auch eine gut sichtbare, rötliche Färbung aufweist.

Selektives laserinduziertes Ätzen beschleunigt die Herstellung und erübrigt die Montage

Am Fraunhofer ILT wurde in Kooperation mit dem Lehrstuhl für Lasertechnik LLT der RWTH Aachen University ein Laserfertigungsverfahren entwickelt, mit dem sich der Fertigungsprozess von Mikrobauteilen aus transparenten Materialien zeitlich verkürzen sowie Material und Energie einsparen lässt. Nun haben die Experten das Selektive Laserinduzierte Ätzen (in-volume selective laser etching, ISLE) auf die Herstellung zusammengesetzter und montierter Bauteile übertragen. Damit wird eine Justierung und Montage der einzelnen Komponenten in mikromechanischen Systemen überflüssig. Die Belichtungszeit eines Zahnrades, das bereits auf einer Welle montiert und in einem Gehäuse eingebaut ist, beträgt nur noch rund 15 Minuten.
Der Prozess läuft folgendermaßen ab: Mittels ultrakurz gepulster Laserstrahlung wird ein transparentes Werkstück mit 3D-Auflösung im Volumen genau dort belichtet, wo Material entfernt werden soll. Das Material wird chemisch und physikalisch so verändert, dass es selektiv ätzbar wird. Im anschließenden nasschemischen Ätzprozess wird das belichtete Material entfernt, während das unbelichtete Material vom Ätzprozess nahezu nicht beeinflusst wird. Auf diese Weise lassen sich Mikrokanäle, Formbohrungen, strukturierte Bauteile sowie komplexe, zusammengesetzte, mechanische Komponenten und Systeme herstellen. Das ISLE-Verfahren kann neben Rubin auch für Saphir oder Glas verwendet werden. Es ist reproduzierbar und in der Lage, serienidentische Geometrieanforderungen der Bauteile zu gewährleisten. Dabei bietet das ISLE-Verfahren eine große Geometrie- und Designfreiheit. Formgenauigkeiten kleiner einem Mikrometer sowie Schnittfugen und Bohrungen mit extrem großen Aspektverhältnissen aufgrund des kleinen Fokusvolumens zeichnen das ISLE-Verfahren besonders aus. Mit dem ISLE-Verfahren lässt sich eine große Material- und Energieeffizienz realisieren, die mit abtragenden Verfahren auch bei fortschreitender Entwicklung prinzipiell nicht erreicht werden kann.

Skalierung des Laserfertigungsverfahrens für die industrielle Anwendung

Die zentrale Aufgabe der Aachener Forscher besteht nun darin, das ISLE-Verfahren den Herstellern von Mikrobauteilen zur Verfügung zu stellen. »Wir arbeiten an der kontinuierlichen Verbesserung der Skalierbarkeit unseres Verfahrens, um den zukünftigen Transfer von der Forschungseinrichtung in die industrielle Fertigung zu ermöglichen«, erklärt Dr. Dagmar Schaefer, Gruppenleiterin am Fraunhofer ILT. »Je nach Anwendung wird das ISLE-Verfahren individuell an die Anforderungen des Kunden angepasst. Die Erfüllung der geforderten Bauteilspezifikationen bei gleichzeitig ausreichend schneller Strukturierung ist für uns die größte Herausforderung.«

Die Geschwindigkeit der Belichtung liegt derzeit bei mehreren hundert Millimetern pro Sekunde. Ziel ist eine Steigerung auf mehrere Meter pro Sekunde. Für die Belichtung eines montierten, drei Millimeter großen Zahnrades von derzeit 15 Minuten würde dies eine Verringerung um den Faktor 10 bedeuten.
Mittelfristig soll durch die Vergrößerung der Laserleistung und der Repetitionsrate sowie der Verwendung schnellerer Strahlablenkungssysteme das Potenzial des entwickelten Verfahrens für eine individualisierte Massenproduktion realisiert werden. Die Fertigung von Mikrobauteilen in Klein- und Großserien soll ebenso wie die Massenproduktion individualisierter Bauteile dadurch kosteneffizienter und flexibler werden.

Ansprechpartner

Dr. Dagmar Schaefer
Leiterin der Gruppe 3D-Volumenstrukturierung
Telefon +49 241 8906-628
dagmar.schaefer@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen

Akad. Oberrat Dr. Ingomar Kelbassa
Stellv. Leiter des Lehrstuhls für Lasertechnik LLT der RWTH Aachen University
Telefon +49 241 8906-143
ingomar.kelbassa@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen

Axel Bauer | Fraunhofer ILT
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Augmented-Reality-System erleichtert die manuelle Herstellung von Produkten aus Faserverbundmaterialien
04.03.2020 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Modulares Fertigungskonzept für Bipolar-Batterien
02.03.2020 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungsnachrichten

Wenn Ionen an ihrem Käfig rütteln

06.04.2020 | Energie und Elektrotechnik

Virtueller Roboterschwarm auf dem Mars

06.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics