Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Come together: Gemeinsam zur optimalen Mischbauweise

14.02.2018

Wie sich dank gezielter Zusammenarbeit ein serienmäßiges Pkw-Hybridbauteil optimieren lässt, beweisen auf der JEC World Composite Show in Paris im März das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Darmstadt und das Fraunhofer-Institut für Lasertechnik ILT, Aachen: Sie haben mit Industriepartnern als Demonstrator einen Multi-Material-Dachspriegel entwickelt, den die Forscher erstmals auf dem Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau AZL, Halle 5/C55 präsentieren.

Im Rahmen des BMBF-Projektes HyBriLight wurde ein Hybrid-Bauteil entwickelt, das die erfolgreiche Implementierung von neuen, innovativen Laserprozessen in die Leichtbau-Produktion demonstriert. Bei dem Hybrid-Bauteil handelt es sich um einen sogenannten Dachspriegel, der auf dem Originalteil eines Fahrzeugs der BMW 7erSerie basiert.


Multi-Material-Dachspriegel: Dieser Demonstrator des Fraunhofer LBF und ILT zeigt auf der JEC World Composite Show, wie sich Kosten und Bearbeitungszeit bei einem Automobilbauteil senken lassen.

© Fraunhofer ILT, Aachen

Er besteht aus einer faserverstärkten Kunststoffstrebe, die mit zwei metallischen Anschlussblechen verbunden ist. Diese dienen als Anbindungselemente zur Karosserie. Als Alternative zum bisher eingesetzten Kleben und Nieten hat das Fraunhofer ILT einen neuen laserbasierten Fügeprozess entwickelt, der Kunststoff und Metall per Formschluss und Adhäsion miteinander verbindet.

Ultrakurzpulslaser strukturiert die Metalloberfläche

Ein Ultrakurzpulslaser erzeugt zunächst schwammartige Mikro- und Nanostrukturen auf der Metalloberfläche der Anschlussbleche. Anschließend folgt das Fließpressen der faserverstärkten Kunststoffstrebe: Dazu kommen die Anschlussbleche als Einlegeteil in ein spezielles, variothermes Formgebungswerkzeug.

Im Urformprozess füllen sich die Metallstrukturen mit Kunststoffschmelze. Erstarrter Kunststoff und Metall erzeugen durch Verkrallung eine feste und dauerhafte Verbindung. Lokale Tapeverstärkungen erhöhen die Steifigkeit des Bauteils. Abschließend wird das Bauteil mit Hilfe eines Faserlasers im Multi-Pass-Verfahren besäumt.

Das Fraunhofer LBF hat das Design dieser speziellen Hybridverbindung optimiert. »Wir haben anhand von Materialproben die statische und zyklische Belastungen analysiert«, erklärt Dominik Spancken, Business Team Leader Experimental Durability Plastics, Fraunhofer LBF. Anhand der Erkenntnisse schätzten wir die Lebensdauer des Bauteils und validierten sie mit experimentellen Tests.«

Hohe Zugscherfestigkeit dank optimiertem Design

Dank des Zusammenspiels der beiden Fraunhofer-Institute mit den Industriepartnern entstand so mit Hilfe eines validierten Prozesses ein Hybridbauteil mit einer extrem hohen Zugscherfestigkeit von fast 50 MPa. Um kosteneffizienter zu produzieren, kommt statt der CFK-verstärkten Duroplaststrebe im BMW-Originalteil eine thermoplastische glasfaserverstärkte PA6-Matrix zum Einsatz. Um die Steifigkeit und Festigkeit des Orginalteils beizubehalten, wurde der Dachspriegel teilweise mit CFK-UD-Tapes lokal verstärkt. Die Zykluszeit für die Fertigung eines Bauteils beträgt rund 75 Sekunden.

Prozesszeit um 70 Prozent gesenkt

»Das Ergebnis kann sich sehen lassen«, meint Projektkoordinatorin Kira van der Straeten, Wissenschaftlerin der Gruppe Kunststoffbearbeitung des Fraunhofer ILT. »Für die Innovation sprechen: Reduzierung der Prozesszeiten im Vergleich zu konventionellen Verfahren um 70 Prozent, Senkung der Kosten für die Rohmaterialien um 45 Prozent und die Integration mehrerer Prozessschritte in einen hochautomatisierten Prozess.«

Projekt HyBriLight

Photonische Werkzeuge für den Leichtbau entstehen im BMBF-Projekt HyBriLight. Im Detail geht es um eine »Werkstoffangepasste Prozesskette zum kosteneffizienten Hybridleichtbau mit hochproduktiven Lasersystemen«, die den Wandel von der Manufaktur zur Serienfertigung einläuten soll. Projektteilnehmer: Fraunhofer-Institut für Lasertechnik ILT, Aachen (Projektkoordination); Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Darmstadt; Weber Fibertech GmbH, Markdorf; Werkzeugbau Siegfried Hofmann GmbH, Lichtenfels; Scanlab GmbH, Puchheim; Bayerische Motoren Werke Aktiengesellschaft, München; Airbus Group Innovations, München; Dilas GmbH, Mainz; Held Systems GmbH, Heusenstramm.

Kontakt

Kira van der Straeten M. Sc.
Gruppe Mikrofügen
Telefon +49 2418906-158
kira.van.der.straeten@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de
https://www.ilt.fraunhofer.de/de/messen-und-veranstaltungen/messen/jec-europe-co...

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Cobot-Assistenz in der Montage: Flexible Lösungen für den Mittelstand auf der Hannover Messe 2020
19.02.2020 | Fraunhofer-Institut für Entwurfstechnik Mechatronik IEM

nachricht HMI Preview 2020: Neue Herzen für Brennstoffzellen: Fraunhofer IWU forscht an zukunftsfähiger Serienproduktion
12.02.2020 | Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics