Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beyond 5G – der übernächste Schritt

02.11.2017

Productronica 2017: Kommunikations-Infrastruktur der Zukunft

Schon heute zeichnet sich ab, dass die Datenraten des kommenden Mobilfunkstandards 5G den wachsenden Datenhunger von privaten Nutzern und In- dustrie nicht lange wird stillen können. Daher forschen Fraunhofer-Experten mit Partnern aus Industrie und Forschung bereits heute im Rahmen des EU-Projekts Terranova an 6G.


Das Fraunhofer IAF fokussiert sich im Projekt TERRANOVA auf die Integration von Funkmodulen auf Chipebene.

© Fraunhofer IAF

Bis Ende 2019 arbeitet das TERRANOVA-Team daran, Terahertz-Funklösungen in Glasfasernetze mit hohen Datenraten einzubetten, neue Frequenzbänder zu erschließen und so den Weg für eine belastbare Kommunikations-Infrastruktur zu schaffen, die bereit für die Anforderungen der Zukunft ist.

Die Einführung des heute gängigen Mobilfunkstandards 4G im Jahr 2010 ermöglichte erstmals Datenübertragungsraten auf dem Niveau von Festnetzinternetzugängen auf mobilen Endgeräten. Dadurch wurden viele Anwendungen, die Mobilnutzer heute gewohnt sind, erst möglich. Beispiele sind Videotelefonie, Übertragung von Video-on-Demand auf das Handy oder auch die Vernetzung von Maschinen und Autos.

Doch der Datenhunger wächst und wächst, sodass auch die vergleichsweise hohe LTE-Datenrate von bis zu einem Gigabit pro Sekunde immer öfter einen limitierenden Faktor für neue Anwendungen darstellt. Dabei steigt der Bedarf nach schnelleren Verbindungen nicht nur bei Handynutzern sondern auch in der Industrie, denn die wachsende Zahl der vernetzen Geräte und Maschinen generiert immer größere Datenströme, die möglichst schnell und störungsfrei übertragen werden müssen.

Entsprechend steht die nächste Mobilfunkgeneration, 5G, schon in den Startlöchern. Der künftige Mobilfunkstandard verspricht eine enorme Leistungssteigerung in der drahtlosen Kommunikation – mit bis zu zehn Gigabit pro Sekunde.

Doch schon jetzt zeichnet sich ab, dass die vorhandenen Frequenzbänder in Zukunft nicht ausreichen werden, um die steigende Nachfrage nach stabiler drahtloser Kommunikation zu bedienen. Aus diesem Grund arbeiten Forscher des Fraunhofer-Instituts für Angewandte Festkörperphysik IAF gemeinsam mit Wissenschaftlern des Fraunhofer-Instituts für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI und weiteren Partnern aus Industrie und Forschung im Rahmen des EU-geförderten Projekts TERRANOVA, bereits heute am übernächsten Mobilfunkstandard.

Ziel ist es, eine Netzverbindung im Terahertz-Frequenzbereich zu ermöglichen, die so stabil ist, dass Daten auch drahtlos mit einer Geschwindigkeit von bis zu 400 Gigabit pro Sekunde transportiert werden können.

Von der Glasfaser in die Luft

Eine Möglichkeit, hohe Datenraten zur Verfügung zu stellen, liegt im Ausbau des Glasfasernetzes. Doch das ist einerseits mit hohen Kosten verbunden und löst andererseits nicht die Herausforderung, mobile Geräte mit hohen Datenraten zu versorgen. Die Lösung: Die Forscher verbinden die Glasfasertechnologie mit der Richtfunkübertragung. Allerdings sind die Frequenzen, auf denen sich Mobilfunk derzeit bewegt, zu niedrig, um die Bandbreite bereitzustellen, die für eine Übertragung auf Glasfaserniveau nötig ist. »Grundsätzlich gilt: Je niedriger die Frequenz, desto weniger Bandbreite. Um auf der Funkstrecke eine Datenrate zu erreichen, die mit der Glasfaser vergleichbar ist, muss daher auf Frequenzen im Terahertz-Bereich gesendet werden. Diese haben zwar eine niedrigere Reichweite als Frequenzen im Megahertz-Bereich, verfügen aber über eine deutlich höhere Bandbreite. So liegen die Frequenzen bei 4G im Bereich von 800 bis 2600 Megahertz und damit bei einer Bandbreite von maximal einem Gigabit pro Sekunde. Bei Frequenzen im Terahertz-Bereich hingegen steht genügend Bandbreite zum Erreichen von Datenraten bis zu 400 Gigabit pro Sekunde zur Verfügung«, erläutert Projektleiter Dr. Thomas Merkle vom Fraunhofer IAF. »Aus diesem Grund arbeiten wir an einem Transfer von optischer zu drahtloser Datenübertragung, das heißt, wir wollen das Potenzial, das in der Glasfaser liegt, voll ausschöpfen, es aber nicht auf das Kabel beschränken, sondern auch auf die Funkstrecke übertragen.«

Vom WLAN ins Mobilfunknetz

Die Bandbreite ist eine zentrale Herausforderung. Das liegt vor allem daran, dass immer mehr Endgeräte und Bereiche an der Kommunikation teilnehmen – vom Handy bis zum Auto, vom Smart Home bis zur Industrie 4.0. »Dabei geht es jedoch nicht allein um die Geschwindigkeit der Datenübertragung. Eine weitere Herausforderung, die im Rahmen des Projekts angegangen wird, ist der nahtlose Übergang zwischen den verschiedenen Zugangstechnologien. Schon heute wechseln mobile Nutzer je nach Verfügbarkeit zwischen Mobilfunknetz und WLAN, und bei Laptops kommt zusätzlich die Möglichkeit hinzu, sich über Kabelverbindungen ins Internet einzuwählen. Es gibt allerdings derzeit keinen fließenden Übergang zwischen den Zugangsarten, sodass es bei einem Wechsel zu Unterbrechungen kommt«, erklärt Dr. Colja Schubert, Gruppenleiter Optische Untersee- und Kernnetze im Fraunhofer HHI. »Im Rahmen von TERRANOVA soll das Erleben und Erfahren für den Nutzer so gestaltet werden, dass er Übergänge zwischen den Zugangstechnologien gar nicht bemerkt.«

Alternative zu klassischen Glasfasernetzen

Auf dem Weg zur übernächsten Mobilfunkgeneration gilt es zahlreiche Herausforderungen zu meistern, sowohl was die einzelnen Komponenten als auch was das Zusammenspiel aller Netzelemente angeht. Dabei kommen den beiden Fraunhofer-Instituten zentrale Aufgabenbereiche zu: So fokussiert sich das Fraunhofer IAF vor allem auf die Funkstrecke und die Integration von Funkmodulen auf Chipebene.

Eine der Herausforderungen dabei ist es, eine Basisbandschnittstelle zur Glasfaser zu integrieren und die Umsetzung der Signale auf dem Chip zu berücksichtigen. Das Fraunhofer HHI hingegen erforscht die Signalprozessierung, also die Aufbereitung der Signale, sodass diese möglichst störungsfrei von der Antenne abgestrahlt werden können. Diese Signalverarbeitung muss bei sehr hohen Geschwindigkeiten geschehen, wofür spezielle Algorithmen entwickelt werden müssen, die die Signalverarbeitung möglichst effizient und damit energiesparend umsetzen.

In enger Zusammenarbeit entwickeln und testen die Forscher des Fraunhofer IAF und des Fraunhofer HHI die Hardware-Implementationen der zukunftsfähigen Netzstruktur. Dabei ergänzen sich die unterschiedlichen Schwerpunkte der beiden Institute. Während das Fraunhofer HHI seine Kompetenz im Bereich Netzkonzepte und fundierte Erfahrung aus zahlreichen 5G-Projekten sowie der Glasfaseroptik miteinbringt, steuert das Fraunhofer IAF seine Erfahrung aus der Hochfrequenzrichtfunktechnik und Millimeterwellentechnik im analogen Bereich bei.

Gerade weil diese Bereiche oft getrennt voneinander bearbeitet werden, liegt in der Kooperation der beiden Institute großes Potenzial für den langfristigen Ausbau des Hochgeschwindigkeits-Internet. Vom 14. bis 17. November informieren die Wissenschaftler auf der Messe Productronica in München über ihre Forschungsarbeiten zum Projekt TERRANOVA (Halle B2.317).

Weitere Informationen:

https://www.fraunhofer.de/de/presse/presseinformationen/2017/November/beyond-5G....

Anne Rommel | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Fraunhofer ESK macht verteilte Anwendungen in der Produktion verlässlich
15.11.2018 | Fraunhofer-Gesellschaft

nachricht 5G sichert Zukunft von Industrie 4.0 – DFKI mit der SmartFactoryKL auf der SPS IPC Drives
13.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics