Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der gläserne Patient

19.11.2001


INI-GraphicsNet stellt auf der MEDICA neue Augmented-Reality-Systeme vor

Die bildgebenden Verfahren der Informationstechnik haben die medizinische Diagnostik schon revolutioniert: Aus Ultraschall-, Röntgen- oder Magnetresonanz-Aufnahmen lassen sich sehr detaillierte und anschauliche dreidimensionale Modelle erzeugen, die neue Einblicke ins Innere des Kranken ermöglichen.
Zur Zeit ist die Computerunterstützung bei der Intervention, das heißt beim Eingriff ins Körperinnere mit Hilfe von Instrumenten, erst in Ansätzen verwirklicht. Durch die Technologie der "Augmented Reality" (AR), der so genannten Erweiterten Realität, ist es möglich, dem Mediziner in sein Sichtfeld vom Rechner erzeugte Informationen einzublenden und damit die reale Umgebung zu überlagern. Mit Hilfe von halbtransparenten Brillen oder Displays blickt der Arzt ins Innere des Patienten, kann Organe, Gewebeteile oder Knochen genau betrachten - ohne den Kranken zu berühren oder den Blick von der Eingriffsstelle abzuwenden.
Wie die Technologie der Augmented Reality die Ärzte vor, während und nach einer Intervention optimal unterstützten kann, zeigen Forscher des INI-GraphicsNet auf der MEDICA 2001 in Düsseldorf vom 21. bis 24. November 2001. Das Fraunhofer-Institut für Graphische Datenverarbeitung IGD und das Zentrum für Graphische Datenverarbeitung e.V. (ZGDV) in Darmstadt demonstrieren ihre integrierten AR-Lösungen für unterschiedliche medizinische Anwendungen auf dem Gemeinschaftsstand in Halle 14, Stand A05/06.
Ein Szenario aus dem Projekt AR-X-Ray: Zur Behandlung eines Patienten setzt der Chirurg die teiltransparente Datenbrille auf. Sogleich erhält er die anatomischen Strukturen, aus Computertomografie (CT)-Daten ermittelt, lagerichtig über dem Kopf des Patienten eingeblendet. Auf Wunsch erscheinen grafische Zusatzinformationen, beispielsweise ein optimaler Zuweg, den der Arzt so bereits in der Operationsplanung festgelegt hat. Oder das System AR-X-Ray zeigt dem Chirurg millimetergenaue Navigationsdaten an, die im helfen die Instrumente exakt zu führen. Die aktuelle Lage der Weichteile und deren Bewegungen (Deformationen) sollen permanent registriert und die eingeblendeten Daten - ob aus CT, Ultraschall, Magnetresonanz oder anderen bildgebenden Verfahren gewonnen - in Echtzeit angepasst werden. "Mit dem gezielten Einsatz der AR-Technologie kann die Genauigkeit und Qualität einer Operation erhöht und gleichzeitig das Risiko für den Patienten minimiert werden", erläutert Ulrich Bockholt, Projektleiter in der Abteilung "Visualisierung und Virtuelle Realität" am Fraunhofer IGD.
Dass die Augmented-Reality-Technologie auch die Diagnose und Therapie des Blasenkrebses verbessern und damit die derzeit hohe Rückfallquote senken kann, soll das Projekt AR-Urolo zeigen: Wissenschaftler des Fraunhofer IGD und der Dr.-Horst-Schmidt-Kliniken entwickeln gemeinsam eine neue Bildverarbeitungs-Software, um die etablierte Weißlicht-Endoskopie "aufzurüsten". Das interdisziplinäre Experten-Team nutzt die unterschiedlichen optischen Eigenschaften, die zwischen dem Blasentumor und dem gesunden Gewebe der Blasenschleimhaut bestehen. Mit einer innovative Computersoftware ist es zukünftig möglich, diese und weitere Charakteristika zu kombinieren, zu entschlüsseln und direkt auf der AR-Brille, einem Display oder Endoskop-Monitor sichtbar zu machen. So kann der Tumor während der Operation ermittelt, markiert und den Urologen über das Endoskopiebild angezeigt werden. "Mit der verbesserten Endoskopie ist es den Ärzten möglich, das Blasenkarzinom vollständig zu entfernen. Auch die kleinen Satellitentumore, flachen Tumorausläufer und Tumorvorstufen - verantwortlich für viele Rückfälle - sollen damit entdeckt werden können", beschreibt Ulrich Bockholt das Projektziel. Dieses neue Verfahren hat keinen Einfluss auf die Endoskopie- und Operationstechnik - der Patient wird nicht zusätzlich belastet.

Ein frei schwenkbares, halbtransparentes Display kann zum Ausgabemedium der Zukunft werden. Im Projekt MEDARPA realisieren die Partner nicht nur ein derartiges "Augmented Reality"-Fenster zum Patienten, sondern weitere neue Visualisierungs- und Interaktionsverfahren, für den medizinischen Arbeitsplatz der Zukunft. Vor der Operation werden die einzelnen Datensätze des Patienten aus Ultraschall, CT und Röntgenaufnahme im Rechner zu dreidimensionalen Modellen zusammengefügt und stehen dem Arzt vor und während des Eingriffs zur Verfügung. "Der Chirurg kann sich die relevanten grafischen Patientendaten über ein halbtransparentes Display einblenden lassen, die er aktuell benötigt und erhält so Einblick in tiefer liegende Strukturen", so beschreibt Michael Schnaider, Leiter der Abteilung "Visual Computing" am ZGDV, die Vorteile der innovativen Ausgabetechnik. Somit kann der Arzt seine chirurgischen Instrumente präziser setzen. Das ist insbesondere in der Neurochirurgie und der Endoskopie wichtig, denn hier ist bei Eingriffen millimetergenaues Vorgehen unerlässlich. Die Ergebnisse von MEDARPA könnten die Endoskopie wie auch für die minimal invasive Chirurgie entscheidend verbessern. Unter der Führung des Zentrums für Graphische Datenverarbeitung (ZGDV) in Darmstadt forschen im MEDARPA-Projekt Partner wie das Fraunhofer IGD, die MedCom GmbH, die Städtischen Kliniken Offenbach, die Universitätsklinik Frankfurt und das Klinikum Nürnberg Nord. Sie entwickeln neue Lösungen für die Bereiche Herzchirurgie, Pulmologie und Radioonkologie.

MEDICA 2001 Messe Düsseldorf
Halle 14, Stand A05/06
Fraunhofer IGD
Ulrich Bockholt
ZGDV
Michael Schnaider
Telefax: 06151/155-199
E-Mail: ulrich.bockholt@igd.fraunhofer.de 
michael.schnaider@zgdv.de

Kurzprofil INI-GraphicsNet:
Das internationale Netzwerk der Graphischen Datenverarbeitung (INI-GraphicsNet) besteht aus dem Fraunhofer-Institut für Graphische Datenverarbeitung IGD, dem Zentrum für Graphische Datenverarbeitung (ZGDV) e.V., beide in Darmstadt und Rostock, und dem Fachgebiet Graphisch-Interaktive Systeme (GRIS) der Technischen Universität Darmstadt. Weitere Institutionen des Netzwerkes sind das Fraunhofer-Anwendungszentrum für Computergraphik in Chemie und Pharmazie (AGC) in Frankfurt, das Fraunhofer Center for Research in Computer Graphics (CRCG) in Providence, Rhode Island (USA), das Fraunhofer Centre for Advanced Media Technology (CAMTech) in Singapur und das Centro de Computaç"o Gráfica (CCG) in Guimar"es (Portugal).
Innerhalb des Netzverbundes sind an den sechs Standorten über 300 Mitarbeiterinnen und Mitarbeiter sowie rund 560 wissenschaftliche Hilfskräfte beschäftigt. Bei einem Haushalt von über 41 Millionen EURO bildet das INI-GraphicsNet weltweit den größten Forschungsverbund auf dem Gebiet der Graphischen Datenverarbeitung.

Bernad Lukacin | idw
Weitere Informationen:
http://www.igd.fhg.de/igd-a4/projects/medizin/
http://www.medarpa.de/

Weitere Berichte zu: Datenverarbeitung Graphische Datenverarbeitung IGD ZGDV

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Roboter zeichnet Skizzen von Messebesuchern
22.06.2018 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

nachricht Automatisierung und Produktionstechnik – Wandlungsfähig – Präzise – Digital
19.06.2018 | Fraunhofer IFAM

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics